
Stateless Core: A Scalable Approach for Quality of
Service in the Internet

Ion Stoica

December 15, 2000

CMU-CS-00-176

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A Thesis Committee:
Approved for Public Release Hui Zhang, chair

Distribution Unlimited Garth A. Gibson
Thomas Gross

Peter Steenkiste
Scott Shenker, ICSI Berkeley

Submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Copyright © 2000 by Ion Stoica

This research was sponsored by DARPA under contract numbers N66001-96-C-8528, E30602-97-2-0287, and
DABT63-94-C-0073. Additional support was provided by Intel Corp., MCI, and Sun Microsystems.

Views and conclusions contained in this document are those of the authors and should no be interpreted as repre-
senting the official policies, either expressed or implied, of DARPA, NSF, Intel, MCI, Sun, or the U.S. government.

20010307 020

Keywords: Quality of Service, Internet, scalabile networks, stateless core, support for conges-
tion control, Differentiated Services, Intergated Services

Abstract

Today's Internet provides one simple service: best effort datagram delivery. This minimalist service
allows the Internet to be stateless, that is, routers do not need to maintain any fine grained informa-
tion about traffic. As a result of this stateless architecture, the Internet is both highly scalable and
robust. However, as the Internet evolves into a global commercial infrastructure that is expected
to support a plethora of new applications such as IP telephony, interactive TV, and e-commerce,
the existing best effort service will no longer be sufficient. In consequence, there is an urgent need
to provide more powerful services such as guaranteed services, differentiated services, and flow
protection.

Over the past decade, there has been intense research toward achieving this goal. Two classes of
solutions have been proposed: those maintaining the stateless property of the original Internet (e.g.,
Differentiated Services), and those requiring a new stateful architecture (e.g., Integrated Services).
While stateful solutions can provide more powerful and flexible services such as per flow bandwidth
and delay guarantees, they are less scalable than stateless solutions. In particular, stateful solutions
require each router to maintain and manage per flow state on the control path, and to perform per
flow classification, scheduling, and buffer management on the data path. Since today's routers can
handle millions of active flows, it is difficult, if not impossible, to implement such solutions in a
scalable fashion. On the other hand, while stateless solutions are much more scalable, they offer
weaker services.

The key contribution of this dissertation is to bridge this long-standing gap between stateless
and stateful solutions in packet switched networks such as the Internet. Our thesis is that "it is
actually possible to provide services as powerful and as flexible as the ones implemented by a
stateful network using a stateless network". To prove this thesis, we propose a novel technique
called Dynamic Packet State (DPS). The key idea behind DPS is that, instead of having routers
maintain per flow state, packets carry the state. In this way, routers are still able to process packets
on a per flow basis, despite the fact that they do not maintain any per flow state. Based on DPS,
we develop a network architecture called Stateless Core (SCORE) in which core routers do not
maintain any per flow state. Yet, using DPS to coordinate actions of edge and core routers along
the path traversed by a flow allows us to design distributed algorithms that emulate the behavior of
a broad class of stateful networks in SCORE networks.

In this dissertation we describe complete solutions including architectures, algorithms and im-
plementations which address three of the most important problems in today's Internet: providing
guaranteed services, differentiated services, and flow protection. Compared to existing solutions,
our solutions eliminate the most complex operations on both the data and control paths in the net-
work core, i.e., packet classification on the data path, and maintaining per flow state consistency
on the control path. In addition, the complexities of buffer management and packet scheduling
are greatly reduced. For example, in our flow protection solution these operations take constant
time, while in previous solutions these operations may take time logarithmic in the number of flows
traversing the router.

To my wife Emilia and my son George

m

IV

Acknowledgements

I am extremely grateful to Hui Zhang, my thesis advisor, for giving me the right amount of freedom
and guidance during my graduate studies. From the very beginning, he treated me as a peer and as a
friend. He was instrumental in maintaining my focus, and constantly reminding me that identifying
the research problem is as important, if not more important, than finding the right solution. Hui not
only taught me how to become a better researcher, but also helped me to become a better person.
His engaging arguments and strong feedback have contributed greatly to this dissertation. I hope
and look forward to continued collaboration with him in the future.

The genesis of this thesis can be tracked back to my internship at Xerox PARC in the summer
of 1997. It all started with Scott Shenker asking the intriguing question: "Can we approximate
Fair Queueing without maintaining per flow state in a network cloud?". I am indebted to Scott for
teaching me how to rigorously define a problem and then pursue its solution. During these years he
was an invaluable source of feedback and support. His suggestions and insights had a great impact
on this dissertation.

I am grateful to the other members of my committee, Garth Gibson, Thomas Gross, and Peter
Steenkiste, for their feedback and for their advice that helped to shape my research skills. Garth
taught me the art of asking the right questions in a technical discourse. His inquisitorial and sharp
questions helped me to better understand the limitations of my research and motivated me to find
better ways to explain my results. Thomas provided the right balance to my research by constantly
encouraging me not to get buried in the algorithmic details, but to always try to put my work into
perspective. Peter always found time to discuss research issues, and gave excellent feedback. He
was one of the first to suggest using Dynamic Packet State to provide guaranteed services.

Thanks to Mihai Budiu, Yang-hua Chu, Urs Hengartner, Eugene Ng, Mahadev Satyanarayanan,
and Jeannette Wing for their feedback and comments that helped to improve the overall quality of
this dissertation. Thanks to Joan Digney for accommodating her busy schedule and proofreading
this thesis, which helped to significantly improve the presentation.

I am grateful to all the friends and colleagues with whom I spent my time as a graduate stu-
dent at Carnegie Mellon University. Thanks to my Romanian friends, Mihai and Raluca Budiu,
Cristian Dima, Marius Minea and George Necula, with whom I spent many hours discussing the
most various and exciting topics. Mihai sparkled many of these conversations with his wit, and by
being a never empty reservoir of information. Thanks to my networking group colleagues and of-
ficemates Yang-hua Chu, Urs Hengartner, Nick Hopper, Tom Kang, Marco Mellia, Andrew Myers,
Eugene Ng, Sanjay Rao, Chuck Rosenberg, Kay Sripanidkulchai, Donpaul Stephens, and Yinglian
Xie. I treasure our animated Friday lunch discussions that always managed to end the week on a
high note. Special thanks to Eugene for his help and patience with my countless questions. He was

the default good-to-answer-all-questions person whom I asked everything, from how to modify the
if _de driver in FreeBSD, to which are the best restaurants around the campus.

The completion of this thesis marks the end of my many years as a student. Among many out-
standing teachers that shaped my education and scientific career are: Hussein Abdel-Wahab, Irina
Athanasiu, Kevin Jeffay, David Keyes, Trandafir Moisa, Stephan Olariu, Alex Pothen, and Nicolae
Tapus. I am grateful to Kevin, who was instrumental in helping and then convincing me to come
to Carnegie Mellon University. Many thanks to Irina who during my studies at the "Politehnica"
University of Bucharest gave me the mentorship a student can only dream about.

I would like to express my earnest gratitude to my parents and my sister for their love and
support, without which any of my achievements would not have been possible. Thanks to my father
who sparkled my early interest in science and engineering. His undaunting confidence gave me the
strength to overcome any difficulties and to maintain high goals. Thanks to my mother for her love
and countless sacrifices to raise and to give me the best possible education.

I am deeply indebted to my dear wife Emilia for her love and understanding through my graduate
years. She was always behind me and gave her unconditional support even if that meant to sacrifice
the time we spent together. I thank my mother and my mother in-law who devotedly took care of
our son for two and a half years. Without their help, it would not have been possible to reach this
stage in my career. Finally, thanks to our son George for the joy and the happiness he brings to me
during our many moments together.

vi

Contents

1 Introduction 1
1.1 Main Contribution 2
1.2 Other Contributions 4
1.3 Evaluation 5
1.4 Discussion 6

1.4.1 Why Per Flow Processing? 6
1.4.2 Scalability Concerns with Stateful Network Architectures 7

1.5 Organization 9

2 Background 11
2.1 Circuit Switching vs. Packet Switching 11
2.2 IP Network Model 12

2.2.1 Router Architecture 13
2.2.2 DataPath 14
2.2.3 Control Path 18
2.2.4 Discussion 20

2.3 Network Service Taxonomy 21
2.3.1 Best Effort Service 22
2.3.2 Flow Protection: Network Support for Congestion Control 23
2.3.3 Integrated Services 25
2.3.4 Differentiated Services 26

2.4 Summary 28

3 Overview 29
3.1 Solution Overview 29

3.1.1 The Stateless Core (SCORE) Network Architecture 29
3.1.2 The "State-Elimination" Approach 30
3.1.3 The Dynamic Packet State (DPS) Technique 30

3.2 Prototype Implementation 36
3.2.1 An Example 37

3.3 Comparison to Intserv and Diffserv 39
3.3.1 Intserv 39
3.3.2 Diffserv 41

3.4 Summary 42

Vll

Providing Flow Protection in SCORE 45
4.1 Background 45
4.2 Solution Outline 47
4.3 Core-Stateless Fair Queueing (CSFQ) 48

4.3.1 Fluid Model Algorithm 48
4.3.2 Packet Algorithm 48
4.3.3 Weighted CSFQ 52
4.3.4 Performance Bounds 52
4.3.5 Implementation Complexity 53
4.3.6 Architectural Considerations 53
4.3.7 Miscellaneous Details 53

4.4 Simulation Results 54
4.4.1 A Single Congested Link 56
4.4.2 Multiple Congested Links 57
4.4.3 Coexistence of Different Adaptation Schemes 58
4.4.4 Different Traffic Models 60
4.4.5 Large Latency 61
4.4.6 Packet Relabeling 61
4.4.7 Discussion of Simulation Results 62

4.5 Related Work 62
4.6 Summary 64

Providing Guaranteed Services in SCORE 65
5.1 Background 65
5.2 Solution Outline 66
5.3 Data Plane: Scheduling Without Per Flow State 67

5.3.1 Jitter Virtual Clock (Jitter-VC) 68
5.3.2 Core-Jitter-VC (CJVC) 69
5.3.3 Data Path Complexity 72

5.4 Control Plane: Admission Control With No Per Flow State 73
5.4.1 Ingress-to-Egress Admission Control 74
5.4.2 Per-Hop Admission Control 75
5.4.3 Aggregate Reservation Estimation Algorithm 76

5.5 Experimental Results 80
5.5.1 Processing Overhead 83

5.6 Related Work 84
5.7 Summary 85

Providing Relative Service Differentiation in SCORE 87
6.1 Background 88
6.2 Solution Outline 89
6.3 LIRA: Service Differentiation based on Resource Right Tokens 90

6.3.1 Link Cost Computation 91
6.3.2 Path Cost Computation and Distribution 92

vin

6.3.3 Multipath Routing and Load Balancing 93
6.3.4 Route Pinning 93
6.3.5 Path Selection 95
6.3.6 Scalability 95

6.4 Simulation Results 96
6.4.1 Experiment Design 97
6.4.2 Experiment 1: Local Fairness and Service Differentiation 98
6.4.3 Experiment 2: User Fairness and Load Balancing 99
6.4.4 Experiment 3: Load Distribution and Load Balancing 100
6.4.5 Experiment 4: Large Scale Example 101
6.4.6 Summary of Simulation Results 103

6.5 Discussion 103
6.6 Related Work 105
6.7 Summary 105

Making SCORE more Robust and Scalable 107
7.1 Failure Model 107

7.1.1 Example 108
7.2 The "Verify-and-Protect" Approach 109

7.2.1 Node Identification 110
7.2.2 Protection Ill
7.2.3 Recovery Ill

7.3 Flow Verification Ill
7.3.1 Bufferless Packet System 114
7.3.2 Flow Identification Test 114
7.3.3 Setting threshold Hu 116
7.3.4 Increasing Flow Identification Test's Robustness and Responsiveness ... 118

7.4 Identifying Misbehaving Nodes 119
7.4.1 General Properties 120

7.5 Simulation Results 122
7.5.1 Calibration 122
7.5.2 Protection and Recovery 124

7.6 Summary 125

Prototype Implementation Description 127
8.1 Prototype Implementation 128

8.1.1 Updating State in IP Header 129
8.1.2 DataPath 129
8.1.3 Control Path 131

8.2 Carrying State in Data Packets 132
8.2.1 Carrying State in IP Header 133
8.2.2 Efficient State Encoding 133
8.2.3 State Encoding for Guaranteed Service 135
8.2.4 State Encoding for LIRA 137

IX

8.2.5 State Encoding for CSFQ 138
8.2.6 State Encoding Formats for Future Use 138

8.3 System Monitoring 138
8.4 System Configuration 140

8.4.1 Router Configuration 141
8.4.2 Flow Reservation 141
8.4.3 Monitoring 141

8.5 Summary 142

9 Conclusions and Future Work 145
9.1 Contributions 145
9.2 Limitations 147
9.3 Future Work 149

9.3.1 Decoupling Bandwidth and Delay Allocations 149
9.3.2 Excess Bandwidth Allocation 149
9.3.3 Link Sharing 150
9.3.4 Multicast 151
9.3.5 Verifiable End-to-End Protocols 152
9.3.6 Incremental Deployability 152
9.3.7 General Framework 153

9.4 Final Remarks 153

A Performance Bounds for CSFQ 165

B Performance Bounds for Guaranteed Services 171
B.l Network Utilization of Premium Service in Diffserv Networks 171
B.2 Proof of Theorem 2 173
B.3 Proof of Theorem 3 177

B.3.1 Identical Flow Rates 177
B.3.2 Arbitrary Flow Rates 182

B.4 Proof of Theorem 4 188

List of Figures

1.1 (a) A reference stateful network whose functionality is approximated by (b) a Stateless Core

(SCORE) network. In SCORE only edge nodes maintain per flow state and perform per flow

management; core nodes do not maintain any per flow state 2

1.2 An illustration of the Dynamic Packet State (DPS) technique used to implement per flow

services in a SCORE network: (a-b) upon a packet arrival the ingress node inserts some flow

dependent state into the packet header; (b-c) a core node processes the packet based on this

state, and eventually updates both its internal state and the packet state before forwarding it.

(c-d) the egress node removes the state from the packet header. 3

2.1 The architecture of a router that provides per flow quality of service (QoS). Input inter-

faces use routing lookup or packet classification to select the appropriate output interface

for each incoming packet, while output interfaces implement packet classification, buffer

management, and packet scheduling. In today's best effort routers, neither input nor output

interfaces implement packet classification 14

3.1 Example illustrating the CSFQ algorithm at a core router. An output link with a capacity

of 10 is shared by three flows with arrival rates of 8, 6, and 2, respectively. The fair rate of

the output link in this case is a = 4. Each arrival packet carries in its header the rate of the

flow it belongs to. According to Eq. (3.3) the dropping probability for flow 1 is 0.5, while

for flow 2 it is 0.33. Dropped packets are indicated by crosses. Before forwarding a packet,

its header is updated to reflect the change in the flow's rate due to packet dropping (see the

packets at the right-hand side of the router) 31

3.2 Example illustrating the estimation of the aggregate reservation. Two flows with reserva-

tions of 5, and 2, respectively, share a common link. Ingress routers initialize the header of

each packet according to Eq. (3.4). The aggregate reservation is estimated as the ratio be-

tween the sum of the values carried in the packets' headers during an averaging time interval

of length T. In this case the estimated reservation is 65/10 = 6.5 33

3.3 Example illustrating the route pinning algorithm. Each packet contains in its header the

path's label, defined as the xor over the identifiers of all routers on the remaining path to

the egress! Upon packet arrival, the packet's header is updated to the label of the remaining

path. The routing decisions are exclusively based on the packet's label (here the labels are

assumed to be unique) 35

XI

3.4 The topology used in the experiment reported in Section 3.2. Flow 1 is CBR, has an arrival

rate of 1 Mbps. and a reservation of 1 Mbps. Flow 2 is ON-OFF; it sends 3 Mbps during

ON periods and doesn't send anything during OFF periods. The flow has a reservation of 3

Mbps. Flow 3 is best-effort and has an arrival rate of 8 Mbps. The link between aruba and

cozumel is configured to 10 Mbps 38

3.5 A screen-shot of our monitoring tool that displays the real-time measurement results for the

experiment shown in Figure 3.4. The top two plots show the arrival rate of each flow at

aruba and cozumel; the bottom two plots show the delay experienced by each flow at

the two routers 38

4.1 (a) A reference stateful network that provides fair bandwidth allocation; each node im-

plements the Fair Queueing algorithm, (b) A SCORE network that approximates the ser-

vice provided by the reference network; each node implements our algorithm, called Core-

Stateless Fair Queueing (CSFQ) 47

4.2 The architecture of the output port of an edge router, and a core router, respectively 49

4.3 The pseudocode of CSFQ 50

4.4 The pseudocode of CSFQ (fair rate estimation) 51

4.5 (a) A 10 Mbps link shared by N flows, (b) The average throughput over 10 sec when N =

32, and all flows are CBRs. The arrival rate for flow i is (i + 1) times larger than its fair

share. The flows are indexed from 0 56

4.6 (a) The throughputs of one CBR flow (0 indexed) sending at 10 Mbps, and of 31 TCP flows

sharing a 10 Mbps link, (b) The normalized bandwidth of a TCP flow that competes with

W CBR flows sending at twice their allocated rates, as a function of A' 57

4.7 Topology for analyzing the effects of multiple congested links on the throughput of a flow.

Each link has ten cross flows (all CBRs). All links have 10 Mbps capacities. The sending
rates of all CBRs, excepting CBR-0. are 2 Mbps, which leads to all links between routers

being congested 58

4.8 (a) The normalized throughput of CBR-0 as a function of the number of congested links.

(b) The same plot when CBR-0 is replaced by a TCP flow 58

4.9 The throughputs of three RLM flows and one TCP flow along a 4 Mbps link 59

4.10 Simulation scenario for the packet relabeling experiment. Each link has 10 Mbps capacity,

and a propagation delay of 1 ms 62

5.1 (a) A reference stateful network that provides the Guaranteed service [93]. Each node imple-

ments the Jitter-Virtual Clock (Jitter-VC) algorithm on the data path, and per flow admission

control on the control path, (b) A SCORE network that emulates the service provided by

the reference network. On the data path, each node approximates Jitter-VC with a new algo-

rithm, called Core-Jitter Virtual Clock (CJVC). On the control path each node approximates

per flow admission control 67

5.2 The time diagram of the first two packets of flow ?' along a four node path under (a) Jitter-

VC, and (b) CJVC, respectively. Propagation times, nj, and transmission times of maximum

size packets, rj, are ignored 70

5.3 Algorithms performed by ingress, core, and egress nodes at the packet arrival and departure.

Note that core and egress nodes do not maintain per flow state 71

xii

5.4 Ingress-egress admission control when RSVP is used outside the SCORE domain 74

5.5 The scenario in which the lower bound of b,, i.e., r j (Tw — Tj - Tj), is achieved. The arrows

represent packet transmissions. Tw is the averaging window size; Tj is an upper bound on

the packet inter-departure time: Tj is an upper bound on the delay jitter. Both ml and rn2

miss the estimation interval Tu' 77
5.6 The control path algorithms executed by core nodes; Rnew is initialized to 0 79

5.7 The test configuration used in experiments 80

5.8 Packet arrival and departure times for a 10 Mbps flow at (a) the ingress node, and (b) the

egress node 81

5.9 The packets' arrival and departure times for four flows. The first three flows are guaranteed,

with reservations of 10 Mbps, 20 Mbps, and 40 Mbps. The last flow is best effort with an

arrival rate of about 60 Mbps 82

5.10 The estimate aggregate reservation Rc„i, and the bounds Rbound and Rc„i in the case of (a)
two ON-OFF flows with reservations of 0.5 Mbps, and 1.5 Mbps, respectively, and in the

case when (b) one reservation of 0.5 Mbps is accepted at time t = 18 seconds, and then is

terminated at t = 39 seconds 83

6.1 When a preferred packet arrives, the node computes the packet's cost, and the packet is

marked if there are sufficient resource tokens 91

6.2 Example of route binding via packet labeling 93

6.3 Topology to illustrate the label and cost aggregation 96

6.4 (a) Topology used in the first experiment. Each link has 10 Mbps capacity. SI, 52, and S3

send all their traffic to Dl. (b) The throughputs of the three users under BASE and STATIC

schemes, (c) The throughputs under STATIC when the token rate of 52 is twice the rate of

51/52 98
6.5 (a) Topology used in the second experiment. 51, 52, 53, and 54 send all their traffic to

Dl, -D2, and D3, respectively, (b) The throughputs of all users under BASE, STATIC, and
DYNAMIC-2 99

6.6 (a) Topology used in the third experiment. Mean throughputs when (b) load is balanced,

and (c) when it is unbalanced, i.e, S3 and S4 are inactive 100

6.7 Topology similar to the T3 topology of the NSFNET backbone network containing the IBM

NSS nodes 101
6.8 The throughputs when the load is balanced (Figure 6.7(a)), (b) unbalanced ((Figure 6.7(b)),

and (c) when the network is virtually partitioned (Figure 6.7(c)) 102

7.1 Three flows arriving at a CSFQ router: flow 1 is consistent, flow 2 is downward-inconsistent,

and flow 3 is upward-inconsistent 108

7.2 (a) A CSFQ core router cannot differentiate between an inconsistent flow with an arrival

rate of 8, whose packets carry an estimated rate of 1, and 8 consistent flows, each having

an arrival rate of 1. (b) Since CSFQ assumes implicitly that all flows are consistent it will

allocate a rate of 8 to the inconsistent flow, and a rate of 1 to consistent flows. The crosses

indicate dropped packets 109

xui

7.3 (a) An example illustrating how a misbehaving router (represented by the black box) can

affect the down-stream consistent traffic in the case of CSFQ. In particular, the misbehaving

router will affect flow 1, which in turn affects flows 2 and 3 as they share the same down-

stream links with flow 1. (b) In the case of Fair Queueing the misbehaving router will affect

only flow 1; the other two flows are not affected 110

7.4 The pseudocode of the flow verification algorithm 112

7.5 The probability density function (p.d.f.) of the relative discrepancy of estimating the flow

rate for different values of kor 115

7.6 (a) The probability to identify an inconsistent flow, pid, and (b) the expected number of tests

it takes to classify a flow as inconsistent, iij„r, as functions of H„. (The values of ;/,„,. for

kjnc < 1.25 and H„ = 0.3 are not plotted as they are larger than 10°.) All inconsistent

flows have A0,. = 1,/,-„<- = 0.1. and?» = 10 118

7.7 (a) The probability to identify an inconsistent flow.;;,-,(, and (b) The expected number of

tests to classify a flow as inconsistent, »,„r, versus inconsistency factor. A-,,,,., for various

values of ?» 119

7.8 (a) The probability to identify an inconsistent flow.;;,,/. and (b) the expected number of tests

it takes to classify a flow as inconsistent. ?/,„,.. We consider 30 flows, out of which three are

inconsistent 123

7.9 (a) Topology used to illustrate the protection and recovery aspects of our scheme, (b) The

aggregate throughput of all flows from router 1 to router 5, and of all flows from router 2

to router 5, respectively. All consistent flows are UDPs with A-,„r = 1.3. The inconsistent

flow is UDP and has kinc = 1.3 = A„,r = 1.3 124
7.10 Aggregate throughputs of all flows from router 1 to router 5, and from router 2 to router

5, when all routers implement (a) the unmodified CSFQ, and (b) the "verify-and-protect"

version of CSFQ. All consistent flows are UDPs with A',„r = 1.3. The inconsistent flow is

UDP with kinr = 2, and Aw = 1 125
7.11 Aggregate throughputs of all flows from router 1 to router 5, and from router 2 to router

5, when all routers implement (a) the unmodified CSFQ, and (b) the "verify-and-protect"

version of CSFQ. All consistent flows are TCPs. The inconsistent flow is UDP with A-,„r =

2, and fc,-„r = 1 126

8.1 Data structures used to implement CJVC. The rate-regulator is implemented by a calendar

queue, while the scheduler is implemented by a two-level priority queue. Each node at the

second level (and each node in the calendar queue) represents a packet. The first number

represents the packet's eligible time; the second its deadline, (a) and (b) show the data

structures before and after the system time advances from 5 to 6. Note that all packets that

become eligible are moved in one operation to the scheduler data structure 130

8.2 The C code for converting between integer and floating point formats, m represents the

number of bits used by the mantissa; n represents the number of bits in the exponent. Only

positive values are represented. The exponent is computed such that the first bit of the

mantissa is always 1, when the number is > 2"'. By omitting this bit, we gain an extra bit

in precision. If the number is < 2"' we set by convention the exponent to 2" — 1 to indicate

this 134

xiv

8.3 For carrying DPS state we use the four bits from the TOS byte (or DS field) reserved for

local use and experimental purposes, and up to 13 bits from the IP fragment offset 135

8.4 State encoding in the case of providing guaranteed service, and flow protection 136

8.5 The information logged for each packet that is monitored. In addition to most fields of the

IP header, the router records the arrival and departure times of the packet (i.e., the ones that

are shaded). The type of event is also recorded, e.g., packet departure, or packet drop. The

DPS state is carried in the ToS and the fragment offset fields 139

9.1 An Example of Link-Sharing Hierarchy 151

B.l Per-hop worst-case delay experienced by premium traffic in a Diffserv domain, (a) and

(b) show the traffic pattern at the first and a subsequent node. The black and all dark grey

packets go to the first output; the light grey packets go to the other outputs 172

B.2 Reducing pi, p-2,... pn to three distinct values 184

B.3 The scenario in which the upper bound of hi, i.e., r,(IV ~ Tj — Tj), is achieved. The

arrows represent packet transmissions. X\r is the averaging window size; Tj is an upper

bound on the packet inter-departure time; Tj is an upper bound on the delay jitter. Both m 1

and ml fall just inside the estimation interval, TV, at the core node 189

xv

XVI

List of Tables

2.1 A taxonomy of services in IP networks 22

4.1 Statistics for an ON-OFF flow with 19 Competing CBRs flows (all numbers are in packets) 60

4.2 The mean transfer times (in ms) and the corresponding standard deviations for 60 short

TCPs in the presence of a CBR flow that sends at the link capacity, i.e., 10 Mbps 61

4.3 The mean throughput (in packets) and standard deviation for 19 TCPs in the presence of

a CBR flow along a link with propagation delay of 100 ms. The CBR sends at the link

capacity of 10 Mbps 61

4.4 The throughputs resulting from CSFQ averaged over 10 sec for the three flows in Figure 4.10
along link 2 62

4.5 Simulation 1 - The throughputs in Mbps of one UDP and two TCP flows along a 1.5 Mbps

link under REDI [36] and CSFQ, respectively. Simulation 2 - The throughputs of two TCPs

(where TCP-2 opens its congestion window three times faster than TCP-1), under REDI and

CSFQ, respectively 63

5.1 Notations used in Section 5.3 68

5.2 The upper bound of the queue size, s, computed by Eq. (5.11) for e = ^— (where n is

the number of flows) versus the maximum queue size achieved during the first n time slots

of a busy period over 105 independent trials, during the first n time slots of a busy period:

(a) when all flows have identical reservations; (b) when the flows' reservations differ by a
factor of 20 73

5.3 Notations used in Section 5.4.3 ; 75

5.4 The average and standard deviation of the enqueue and dequeue times, measured in /zs. . . 83

7.1 Notations used throughout this chapter. For simplicity, the notations do not include the time

arguments 113

7.2 pid and riinc as a function of the parameter ki„,c of the inconsistent flows. We consider 27

consistent TCP flows and 3 UDP inconsistent flows 123

xvii

Chapter 1

Introduction

Today's Internet provides one simple service: best effort datagram delivery. Such a minimalist
service allows routers to be stateless, that is, except for the routing state, which is highly aggregated,
routers do not need to maintain any fine grained state about traffic. As a consequence, today's
Internet is both highly scalable and robust. It is scalable because router complexity does not increase
in either the number of flows or the number of nodes in the network, and it is robust because there
is little state, if any, to update when a router fails or recovers. The scalability and robustness are two
of the most important reasons behind the success of today's Internet.

However, as the Internet evolves into a global commercial infrastructure, there is a growing need
to provide more powerful services than best effort such as guaranteed services, differentiated ser-
vices, and flow protection. Guaranteed services would make it possible to guarantee performance
parameters such as bandwidth and delay on a per flow basis. An example would be to guarantee
that a flow receives at least a specified amount of bandwidth, ensuring that the delay experienced
by its packets does not exceed a specified threshold. This service would provide support for new
applications such as IP telephony, video-conferencing, and remote diagnostics. Differentiated ser-
vices would allow us to provide bandwidth and loss rate differentiation for traffic aggregates over
multiple granularities ranging from individual flows to the entire traffic of a large organization. An
example would be to allocate to one organization twice as much bandwidth on every link in the net-
work as another organization. Flow protection would allow diverse end-to-end congestion control
schemes to seamlessly coexist in the Internet, protecting the well behaved traffic from the malicious
or ill-behaved traffic. For example, if two flows share the same link, with flow protection, each flow
will get at least half of the link capacity independent of the behavior of the other flow, as long as
the flow has enough demand. In contrast, in today's Internet, a malicious flow that sends traffic at
a higher rate than the link capacity can provoke packet losses to another flow no matter how little
traffic that flow sends!

Providing these services in packet switched networks such as the Internet has been one of the
major challenges in the network research over the past decade. To address this challenge, a plethora
of techniques and mechanisms have been developed for packet scheduling, buffer management,
and signaling. While the proposed solutions are able to provide very powerful network services,
they come at a cost: complexity. In particular, these solutions usually assume a stateful network
architecture, that is, a network in which every router maintains per flow state. Since there can be a
large number of active flows in the Internet, and this number is expected to continue to increase at an
exponential rate, it is an open question whether such an architecture can be efficiently implemented.

1

Q edge node core node

a) Reference Stateful Network b) SCORE Network

Figure 1.1: (a) A reference stateful network whose functionality is approximated by (b) a Stateless Core
(SCORE) network. In SCORE only edge nodes maintain per flow state and perform per flow management;
core nodes do not maintain any per flow state.

In addition, due to the complex algorithms required to set and preserve the state consistency across
the network, robustness is much harder to achieve.

In summary, while stateful architectures can provide more sophisticated services than the best
effort service, stateless architectures such as the current Internet are more scalable and robust. The
natural question is then: Can we achieve the best of the two worlds? That is, is it possible to
provide seivices as powerful and flexible as the ones implemented by a stateful network in a stateless
network?

In this dissertation we answer this question affirmatively by showing that some of the most
representative Internet services that require stateful networks can indeed be implemented in a mostly
stateless network architecture.

1.1 Main Contribution

The main contribution of this dissertation is to provide the first solution that bridges the long-
standing gap between stateless and stateful network architectures. In particular, we show that three
of the most important Internet services proposed in literature during the past decade, and for which
the previous known solutions require stateful networks, can be implemented in a stateless core
network. These services are: (1) guaranteed services, (2) service differentiation for large granularity
traffic, and (3) flow protection to provide network support for congestion control.

The main goal of our solution is to push the state and therefore the complexity out of the network
core, without compromising network ability to provide per flow services. The key ideas that allow
us to achieve this goal are:

1. instead of having core nodes maintain per flow state, have packets carry this state, and

2. use the state carried by the packets to implement distributed algorithms to provide network
services as powerful and as flexible as the ones implemented by stateful networks

<3Q 0 o
a)

I ■

b)

tp="- o
c)

—o D o^
d)

Figure 1.2: An illustration of the Dynamic Packet State (DPS) technique used to implement per flow services
in a SCORE network: (a-b) upon a packet arrival the ingress node inserts some flow dependent state into the
packet header; (b-c) a core node processes the packet based on this state, and eventually updates both its
internal state and the packet state before forwarding it. (c-d) the egress node removes the state from the
packet header.

The following paragraphs present the main components of our solution:

The Stateless Core (SCORE) Network Architecture The basic building block of our solution is
the Stateless Core (SCORE) domain. We define a SCORE domain as being a trusted and contiguous
region of network in which only edge routers maintain per flow state; the core routers do not main-
tain any per flow state (see Figure 1.1(b)). Since edge routers usually run at a much lower speed and
handle far fewer flows than core routers, this architecture is highly scalable.

The "State-Elimination" Approach Our ultimate goal is to provide powerful and flexible network
services in a stateless network architecture. To achieve this goal, we propose an approach, called
"state-elimination" approach, that consists of two steps (see Figure 1.1). The first step is to define a
reference stateful network that implements the desired service. The second step is to approximate
or, if possible, to emulate the functionality of the reference network in a SCORE network. By doing
this, we can provide services as powerful and flexible as the ones implemented by a stateful network
in a mostly stateless network architecture, i.e., in a SCORE network.

The Dynamic Packet State (DPS) Technique To implement the approach, we propose a novel
technique called Dynamic Packet State (DPS). As shown in Figure 1.2, with DPS, each packet
carries in its header some state that is initialized by the ingress router. Core routers process each
incoming packet based on the state carried in the packet's header, updating both its internal state and
the state in the packet's header before forwarding it to the next hop. In this way, routers are able to
process packets on a per flow basis, despite the fact that they do not maintain per flow state. As we
will demonstrate in this dissertation, by using DPS to coordinate the actions of edge and core routers
along the path traversed by a flow, it is possible to design distributed algorithms to approximate the

behavior of a broad class of stateful networks using networks in which core routers do not maintain
per flow state.

The "Verify-and-Protect" Approach While our solutions based on SCORE/DPS have many
advantages over traditional stateful solutions, they still suffer from robustness and scalability lim-
itations when compared to stateless solutions. The scalability of the SCORE architecture suffers
from the fact that the network core cannot transcend trust boundaries (such as boundaries between
competing Internet Service Providers), and therefore high-speed routers on these boundaries must
be stateful edge routers. System robustness is limited by the possibility that a single edge or core
router may malfunction, inserting erroneous information in the packet headers, thus severely im-
pacting performance of the entire network.

In Chapter 7 we propose an approach, called "verify-and-protect", that overcomes these limita-
tions. We achieve scalability by pushing the complexity all the way to the end-hosts, eliminating
the distinction between edge and core routers. To address the trust and robustness issues, all routers
statistically verify that the incoming packets are correctly marked. This approach enables routers to
discover and isolate misbehaving end-hosts and routers.

1.2 Other Contributions

To achieve the goal of providing the same level of services in a SCORE network as in traditional
stateful networks, we propose several novel distributed algorithms that use DPS to coordinate the
actions between the edge and core nodes. Among these algorithms are:

Core-Stateless Fair Queueing (CSFQ) This is the first algorithm to approximate the band-
width allocation achieved by a stateful network in which all routers implement Fair Queue-
ing [31,79] in a core stateless network. As discussed in Chapter 4, CSFQ allows us to provide
per flow protection in a SCORE network.

Core Jitter Virtual Clock (CJVC) This is the first algorithm to provide the same worst-
case bandwidth and delay guarantees as Jitter Virtual Clock [126] and Weighted Fair Queue-
ing [31, 79] in a network architecture in which core routers maintain no per flow state. CJVC
implements the full functionality on the data path to provide guaranteed services in a SCORE
network (see Chapter 5).

Distributed admission control We propose a distributed per flow admission control proto-
col in which core routers need to maintain only aggregate reservation state. To maintain this
state, we develop a robust algorithm based on DPS that provides the same or even stronger
semantics than those provided by previously proposed stateful solutions such as the ATM
User-to-Network (UNI) signaling protocol and Reservation Protocol (RSVP) [1, 128]. Ad-
mission control is a key component of providing guaranteed services. It allows us to reserve
bandwidth and buffer space at each router along a flow path to make sure that flow bandwidth
and delay requirements are met.

Route pinning We propose a light-weight protocol and mechanisms to bind a flow to a
specific route (path) through a network domain, without requiring core routers to maintain

per flow state. This can be viewed as an alternative to Multi-Protocol Label Switching
(MPLS) [17]. Our solutions for guaranteed and differentiated services use route pinning to
make sure that all packets of a flow traverse the same path (see Chapters 5 and 6).

A major challenge in implementing the DPS-based algorithms is to find extra space in the packet
header to encode the per flow state. Since this extra space is at premium, especially in the context of
IPv4, we need to encode the state as efficiently as possible. To address this problem, we introduce
two general methods to achieve efficient state encoding.

In the first method, the idea is to leverage knowledge about the state semantics. In particular, to
save space we can use this knowledge to store a value as a function of another value. For example,
if a value is known to be always greater than another value, we can use an accurate floating point
representation to represent the larger value, and store the smaller value as a fraction of the larger
one.

The idea behind the second method is to have different packets of a flow carry different state
formats. This method is appropriate for algorithms that do not require all packets to carry the same
type of state. For example, an algorithm may use the same field in the packet header to insert either
data or control path information, as long as this will not compromise the service semantics.

1.3 Evaluation

In order to evaluate the solutions proposed in this dissertation, we try to answer the following three
questions:

1. How scalable are the algorithms implemented by core routers? Scalability represents the
ability of the network to grow in the number of flows (users), the number of nodes, and the
traffic volume. To answer this question, we express the complexity of the proposed algorithms
as a function of these parameters. In particular, we will show that our DPS based algorithms
implemented by core routers are highly scalable as their complexity does not depend on either
the number of flows or the network size.

2. How close is the service provided by our solution to the service provided by the reference
stateful network? A service is usually defined in terms of performance parameters such as
bandwidth, delay and loss rate. We answer this question by comparing the performance pa-
rameters achieved under our solution and the reference stateful solution. For example, in the
case of the guaranteed services, we will show that end-to-end delay bounds of a flow in our
core stateless solution are identical to the end-to-end delay bounds of the same flow in the
reference stateful solution (see Section 5.3.3).

3. How does the service provided by our solution compare to similar services provided by ex-
isting stateless solutions? Again, we answer this question by comparing the performance
parameters of services provided by our solution and the stateless solutions. However, unlike
the previous question where the goal is to see how well we emulate the target service imple-
mented by a reference stateful network, in this case, our goal is to see how much we gain in
terms of service quality in comparison to existing stateless solutions. For example, in the case

of flow protection, we will show that none of the traditional solutions that exhibit the same
complexity at core routers is effective in providing flow protection (see Section 4.4).

To address the above three questions, we use a mix of theoretical analysis, simulations, and
experimental results. In particular, to answer the first question, we use theoretical analysis to derive
the time and space complexity of the algorithms performed by both edge and core routers. To answer
the last two questions we derive worst-case or asymptotic bounds for the performance parameters
that characterize the service, such as delay and bandwidth. Whenever we cannot obtain such bounds,
or if we want to relax the assumptions to fit more realistic scenarios, we rely on extensive simulations
by using an accurate packet level simulator such as ns-2 [78].

For illustration, consider our solution to provide per flow protection in a SCORE network (see
Chapter 4). To answer the scalability question we show that in our solution a core router does not
need to maintain any per flow state, and that the time it takes to process a packet is independent of
the number of flows that traverse the router, u. In contrast, with the existing solutions, each router
needs to maintain state for every flow, and the time it takes to process a packet increases with log n.
Consequently, our solution exhibits an (){\) space and time complexity, as compared to existing
solutions that exhibit an (){v) space complexity, and an 0(log??,) time complexity. To answer
the second question we use theoretical analysis to show that the difference between the average
bandwidth allocated to a flow in a SCORE network and the bandwidth allocated to the same flow
in the reference network is bounded. In addition, to answer the third question and to study more
realistic scenarios, we use extensive simulations.

Finally, to demonstrate the viability of our solutions and to explore the compatibility of the DPS
technique with IPv4, we present a detailed implementation in FreeBSD, as well as experimental
results, to evaluate accuracy and implementation overhead.

1.4 Discussion

In this dissertation, we make two central assumptions. The first is that the ability to process packets
on a per flow basis is beneficial, and perhaps even crucial, for supporting new emerging applications
in the Internet. The second is that it is very hard, if not impossible, for traditional stateful solutions
to support these services in high-speed backbone routers. It is important to note that these two as-
sumptions do not necessary imply that it is infeasible to support these emerging services in high
speed networks. They just illustrate the drawback of existing solutions that require routers to main-
tain and manage per flow state. In this dissertation we eliminate this problem, by demonstrating that
it is possible to process packet on a per flow basis without requiring high-speed routers to maintain
any per flow state.

The next two sections motivate these assumptions.

1.4.1 Why Per Flow Processing?

The ability to process packets on a per flow basis is important because it would allow us simul-
taneously (1) to support applications with different performance requirements, and (2) to achieve
high resources utilization. To illustrate this point consider a simple example in which a file transfer

application and an audio application share the same link. On one hand, we want the file transfer
application to be able to use the entire link capacity, when the audio source does not send any traffic.
On the other hand, when the audio application starts the transmission, we want this application to be
able immediately to reclaim its share of the link capacity. In addition, since the audio application is
much more sensitive to packet delay than the file transfer application, we should be able to preferen-
tially treat the audio traffic in order to minimize its delay. As demonstrated by previous proposals,
such a functionality can be easily provided in a stateful network in which routers process packets on
a per flow basis [10, 48, 106].

A natural question to ask is whether performing packet processing at a coarser granularity, that
is, on a per class basis, wouldn't allow us to achieve similar results. With such an approach, appli-
cations with similar performance requirements would be aggregated in the same traffic class. This
would make routers much simpler to implement, as they need to differentiate between potentially
only a small number of classes, rather than a large number of flows. While this approach can go a
long way to support new applications in a scalable fashion, it has fundamental limitations. The main
problem is that this approach implicitly assumes that all applications in the same class (1) cooperate,
and (2) have similar requirements at each router. If assumption (1) does not hold, then malicious
users may arbitrarily degrade the service of other users in the same class. If assumption (2) does
not hold, it is very hard to meet all application requirements and simultaneously achieve efficient
resource utilization. Unfortunately, these assumptions do not necessarily hold in practice. As we
discuss in Chapter 4, cooperation is hard to achieve in today's Internet: even in the absence of ma-
licious users, there is a natural incentive for a user to aggressively send more and more traffic in the
hope of making other users quit and grabbing their resources. Assumption (2) may not hold simply
because applications care about the end-to-end performance, and not about the local performance
they experience at a particular router. As a result, applications with similar end-to-end performance
requirements may end up having very different performance requirements at individual routers. For
example, consider two flows that carry voice traffic and belong to the same class, one traversing
a 15 node path, and another traversing a three node path. In addition, assume that, as suggested
by recent studies in the area of interactive voice communication [7, 64], the tolerable end-to-end
delay for both flows is about 100 ms, and that the propagation delay alone along each path is 10
ms. Then, while the first flow can afford a delay of only 6 ms per router, the second flow can afford
a delay of up to 30 ms per router. But if both flows traverse the same router, the router will have
to provide a 6 ms delay to both flows, as it does not have any way to differentiate between the two
flows. Unfortunately, as we show in Appendix B.l, even under very low link utilization (e.g., 15%),
it is very difficult to provide small delay bounds for all flows.

In summary, the ability to process packets on a per flow basis is highly desirable not only because
it allows us to support applications with diverse needs, but also because it allows us to maximize the
resource utilization by closely matching the application requirements to resource consumption.

i

1.4.2 Scalability Concerns with Stateful Network Architectures

In this section, we argue that the existing solutions that enable packet processing on a per flow
basis, that is, stateful solutions, have serious scalability limitations, and that these limitations make
the deployment of these solutions unlikely in the foreseeable future.

Recall that by scalability we mean the ability of a network to grow in the number of nodes, in the
number of users it can support, and the traffic volume it can cany. Since in today's Internet these
parameters increase at an exponential rate, scalability is a fundamental property of any protocol
or algorithm to be deployed in the Internet. Indeed, according to recent statistics, Internet traffic
doubles every six months, and it is expected to do so until 2008 [88]. This growth is fueled by
both the exponential increase in the number of hosts, and the increase of bandwidth available to
end users. The estimated number of hosts1 reached 72 million in February 2000, and it is expected
to reach 1 billion by 2008 [89]. In addition, the replacement of the ubiquitous 56 Kbps modems
with cable modems and Digital Subscriber Line (DSL) connections will increase home users' access
bandwidth by at least one order of magnitude.

In spite of such a rapid growth, a question still remains: with the continuous increase in available
processor speed and memory capacity, wouldn't it be feasible to implement stateful solutions at very
high speeds? In the remainder of this section, we answer this question. In particular, we first discuss
why it is hard to implement per flow solutions today, and then we argue that it will be even harder
to implement them in the foreseeable future.

Very high-end routers today can switch on the order of terabits per second, and handle individual
links of up to 20 Gbps [2]. With an average packet size of 500 bytes, an input has only 25 ns
to process a packet. If we assume a 1 GHz processor that is capable of executing an instruction
every clock cycle, we have have just 25 instructions available per packet. During this time a router
has to read the packet header, classify the packet to the flow it belongs to based on the fields in
the packet header, and then process the packet based on the state associated to the flow. Packet
processing may include rate regulation, and packet scheduling based on some arbitrary parameter
such as the packet deadline. In addition, stateful solutions requires the set up of per flow state, and
the maintenance of this state consistency at all routers on the flow's path. Maintaining the state
consistency in a distributed network environment such as the Internet in which packets can be lost
or arbitrary delayed, and routers can fail is a very difficult problem [4, 117]. Primarily due to these
technical difficulties, none of the high-end routers today implement stateful solutions.

While throwing more and more transistors at the problem will help, this will not necessarily
solve the problem. Even if, as Moore's law predicts, processor performance continues to double
every 18 month, this increase may not be able to offset the faster increase of the Internet traffic vol-
ume, which doubles every six moths. Worse yet, the increase in the router capacity not only reduces
the time available to process a packet, but can also increase the amount of work the router has to
do per packet. This is because a higher speed router will handle more flows, and the complexity
of some of the per packet operations, such as packet classifications, and scheduling, depends on
the number of flows. Even factoring out the algorithmic complexity, maintaining per flow state has
the disadvantage of requiring a large memory footprint, which will negatively impact the memory
access times. Finally, the advances in semiconductor performances will do little to address the chal-
lenge of maintaining the per flow state consistency, arguably the most difficult problem faced by
today's proposals to provide per flow services.

'This number represents only hosts with Domain Names. The actual number of computers that are connected to the
Internet is much larger, but this number is much more difficult to estimate.

1.5 Organization

The rest of this dissertation is organized as follows: Chapter 2 provides background information.
In the first part, it presents the IP network model which is the foundation of today's Internet. In
the second part, it discusses two of the most prominent proposals to provide better service in the
Internet: Integrated Services and Differentiated Services. The chapter emphasizes the trade-offs
between providing stronger semantics services and implementation complexity.

Chapter 3 describes the main components of our solution, and gives three simple examples to
illustrate the DPS technique. The solution is then compared in terms of scalability and robustness
against traditional solutions aiming to provide similar services in the Internet.

Chapters 4, 5, and 6 describe three important network services that can be implemented by
our solution: (1) flow protection to provide network support for congestion control, (2) guaranteed
services, and (3) service differentiation for large traffic aggregates, respectively. Our solution is
the first to implement flow protection for congestion control and guaranteed services in a stateless
core network architecture. We use simulations or experimental results to evaluate our solutions and
compare them to existing solutions that provide similar services.

Chapter 7 describes a novel approach called "verify-and-protect" to overcome some of the scal-
ability and robustness limitations of our solution. We illustrate this approach in the context of
providing per flow protection, by developing tests to accurately identify misbehaving nodes, and
present simulation results to demonstrate the effectiveness of the approach.

Chapter 8 presents our prototype implementation which provides guaranteed services and per
flow protection. It discusses compatibility issues with the IPv4 protocol, and the information encod-
ing in the packet header. The latter part of the chapter discusses a light weight monitoring tool that
is able to continuously monitor the traffic on a per flow basis without affecting real-time guarantees.

Finally, Chapter 9 summarizes the conclusions of the dissertation, discusses the limitations of
our work, and ends with directions for future work.

10

Chapter 2

Background

Over the past decade, two classes of solutions have been proposed to provide better network ser-
vices than the existing best effort service in the Internet: those maintaining the stateless property
of the original Internet (e.g., Differentiated Services), and those requiring a new stateful architec-
ture (e.g., Integrated Services). While stateful solutions can provide more powerful and flexible
services such as per flow guaranteed services, and can achieve higher resource utilization, they are
less scalable than stateless solutions. On the other hand, while stateless solutions are much more
scalable, they offer weaker services. In this chapter, we first present all the mechanisms that a router
needs to implement in order to support these solutions, and then discuss in detail the implementation
complexity of each solution and the service quality it achieves.

The remainder of this chapter is organized as follows. Section 2.1 discusses the two main com-
munication models proposed in the literature: circuit switching and packet switching. Section 2.2
presents the Internet Protocol (IP) network model, the foundation of today's Internet. In particular,
the section discusses the operations performed by existing and the next generation routers on both
the data and control paths. Data path consists of all operations performed by a router on a packet
as the packet is forwarded to its destination, and includes packet forwarding, packet scheduling,
and buffer management. Control path consists of the operations and protocols used to initialize and
maintain the state required to implement the data path functionalities. Examples of control path
operations are constructing and maintaining the routing tables, and performing admission control.
Section 2.3 presents a taxonomy of services in a packet switching network. Based on this taxonomy,
we discuss some of the most prominent services proposed in the context of the Internet: the best
effort service, flow protection, Integrated Services, and Differentiated Services. We then compare
these solutions in terms of the quality of service they provide and their complexity. Section 2.4
concludes this chapter by summarizing our findings.

2.1 Circuit Switching vs. Packet Switching

Communication networks can be classified into two broad categories: packet switching and circuit
switching. Circuit switching networks are best represented by telephone networks, first developed
more than 100 years ago. In these networks, when two end points need to communicate, a dedicated
channel (circuit) is set up between them. The channel remains open for the entire duration of the
call, no matter whether the channel is actually used or not.

11

Packet switching networks are best exemplified by the Asynchronous Transport Mode (ATM)
and Internet Protocol (IP) networks. In these networks information is carried by packets. Each
packet is switched and transmitted through the network based on the information contained in the
packet header. At the destination, the packets are reassembled to reconstruct the original informa-
tion.

The most important advantage of packet switching over circuit switching is the ability to exploit
statistical multiplexing. Unlike circuit switching where no one can use an open channel if its end-
points do not use it, with packet switching, active sources can use any excess capacity made available
by the inactive sources. In a networking environment with bursty traffic, allowing sources to share
network resources can significantly increase network utilization. Indeed, a recent study shows that
the ratio between the peak and the average rate is 3:1 for audio traffic, and as high as 15:1 for data
traffic [88].

The main drawback of packet switching networks is that statistical multiplexing can lead to
congestion. Network congestion happens when the arrival rate temporary exceeds the link capacity.
In such a case, the network has to decide which traffic to drop, and which to transmit. In addition,
end hosts are either expected to implement some form of congestion control, that is, to reduce their
sending rates when they detect congestion in the network, or to avoid congestion by making sure
that they do not send more traffic than the available capacity of the network.

Due to its superior flexibility and resource usage, the majority of today's networks are based
on packet switching technologies. The most prominent packet switching architectures are Asyn-
chronous Transfer Mode [3, 12], and Internet Protocol (IP) [22]. ATM uses fixed size packets called
cells as the basic transmission unit, and was designed from the ground up to provide sophisticated
services such as bandwidth and delay guarantees. In contrast, IP uses variable size packets, and
supports only one basic service: best effort packet delivery, which does not provide any timeliness
or reliability guarantees. Despite the advantages of ATM in terms of quality of service, during the
last decade IP has emerged as the dominant architecture. For several technical and political reasons
that tiy to explain this outcome see Tanenbaum [109].

As a result, our emphasis in this dissertation is on IP networks. While our SCORE/DPS tech-
niques are applicable to packet switching networks in general, in this dissertation we examine them
exclusively in the context of IP. In the remainder of this chapter, we first present the Internet Proto-
col (IP) network model, which is the foundation of today's Internet, and then we consider some of
the major proposals to provide better services in the Internet, and discuss their trade-offs.

2.2 IP Network Model

The main service provided by today's IP network is to deliver packets between any two nodes in the
network with a "reasonable" probability of success. The key component that enables this service
is the router. Each router has two or more interfaces that attach it to multiple networks. Routers
forward each packet based on the destination address in the packet's header. For this purpose, each
router maintains a table, called routing table, that maps every IP address to an interface attached
to the router. Routing tables are constructed and maintained by the routing protocol. The routing
protocol is implemented by a distributed algorithm whose main function is to let routers learn the
reachability of any host in the Internet along a "good" path. In general, the term of "good" applies

12

to the shortest1 path to a node. Thus, ideally, a packet travels along the shortest path from source to
destination.

2.2.1 Router Architecture

As noted in the previous section, a router consists of a set of input interfaces at which packets
arrive, and a set of output interfaces, from which packets depart. The input and output interfaces are
interconnected by a high speed fabric that allows packets to be transfered from inputs to outputs.
The main parameter that characterizes the fabric is the speedup. The speedup is defined as the ratio
between (a) the maximum transfer rate across the fabric from an input to an output interface, and
(b) the capacity of an input (output) link.

As a packet traverses a router, the packet can be stored at input, at output, or at both the input
and output interfaces. Based on where a router can store packets, routers are classified as input
queueing, output queueing, or input-output queueing.

In an output-queueing router, when a packet arrives at the input, it is immediately transferred
to the corresponding output. Since packets are enqueued and scheduled only at the outputs, this
architecture is easy to analyze and understand. For this reason, most analytical studies assume an
output-queueing router model.

On the downside, the output-queueing router architecture requires a speedup as high as n, where
n is the number of inputs. The worst case scenario occurs when all inputs simultaneously receive
packets for the same output. Since inputs are bufferless, the output has to be able to simultaneously
receive the n packets, hence the speedup of n. As the number of inputs in a modern router is quite
large (e.g., it can exceed 32), building high-speed output-queueing routers is, in general, infeasible.
That is why practically all of today's routers employ some sort of input-output queueing. By being
able to buffer packets at the inputs, the speedup of the interconnection fabric can be significantly
reduced. However this comes at a cost: complexity. Since only the output has complete knowledge
of how packets are scheduled, complex distributed algorithms to control the packet transfer from
inputs to outputs have to be implemented. Furthermore, this complexity makes the router behavior
much more difficult to analyze.

In summary, while output-queueing routers are more tractable for analysis, the input and input-
output queueing routers are more scalable and therefore easier to build. Fortunately, recent work has
shown that a large class of algorithms implemented by an output queueing router can be emulated
by an input-output queueing router which has an internal speedup of only 2 [21, 102]. Thus, at
least in principle, it is possible to build scalable input-output queueing routers that can emulate the
behavior of output queueing routers. For this reason, in the remainder of this dissertation, we will
assume an output queueing router architecture.

Next, we discuss in more detail the output-queueing router architecture. Specifically, we present
all the operations that a router needs to perform on the data and control paths in order to implement
currently proposed solutions that aim to provide better services than the best effort service, such as
Integrated Services and Differentiated Services.

'The most common metric used in today's Internet is the number of routers (hops) on the path.

13

input interface

output interface

-►
" •

•
•

X
H

% "ü"Ä"'.i,'

■:- ' -

•
•

Classifier *

flu
flow 2 rm
flow n

Buffer
management

Scheduler

output interface

router

Figure 2.1: The architecture of a router that provides per flow quality of service (QoS). Input interfaces use
routing lookup or packet classification to select the appropriate output interface for each incoming packet,
while output interfaces implement packet classification, buffer management, and packet scheduling. In to-
day's best effort routers, neither input nor output interfaces implement packet classification.

2.2.2 Data Path

Data path represents the set of operations performed by routers on a data packet as the packet
travels from source to destination. The main functions performed by routers on the data path are:
(1) routing lookup, (2) buffer management, and (3) packet scheduling. Routing lookup identifies
the output interface where to forward each incoming packet, based on the destination address in the
packet's header. Buffer management and scheduling are concerned with managing router resources
in case of congestion. In particular, when the buffer overflows, or when it exceeds some predefined
threshold, the router has to decide what packet to drop. Similarly, when there is more than one
packet in the buffer, the router has to decide what packet to transmit next. Usually, today's routers
implement a simple drop-tail buffer management scheme, that is, when the buffer overflows, the
packet at the tail of the queue is dropped. Packets are scheduled on a First-In-First-Out (FIFO)
basis.

However, currently proposed solutions to provide more sophisticated services than the best ef-
fort service, such as per flow bandwidth and delay guarantees, require routers to perform a fourth
function: (4) packet classification. Packet classification consists of mapping each incoming packet
to the flow it belongs to. We use the term flow to denote a subset of packets that travel from one
node to another node in the network. Since both routing lookup and packet classification can be
used to determine to which output interface a packet is forwarded, in the remainder of this section
we refer to both these operations as packet forwarding operations. Figure 2.1 depicts the relation-
ship between the four functions in an output-queueing router that performs per flow management.
In the remainder of this section, we present these functions in more detail. Since currently proposed
solutions to provide per flow service semantics require routers to maintain and manage per flow
state, we will elaborate on the complexity of these routers.

14

2.2.2.1 Packet Forwarding: Routing Lookup and Packet Classification

Packet forwarding is the main and the most complex function performed by today's routers on the
data path. This function consists of forwarding each incoming packet to the corresponding output
interface based on the fields in the packet header. Virtually all routers in today's Internet forward
packets based on their destination addresses. The process of finding the appropriate output port
based on the packet destination address is called routing lookup. However, to implement more
sophisticated functionalities such as providing better services to selected customers or filtering out
some categories of traffic to enter the network, routers may need to use additional fields in the packet
headers to distinguish between different traffic classes. Examples of such fields are the source
address to identify the incoming traffic of a selected customer, and the destination port number to
identify the traffic of different applications. The process of finding the class to which the packet
belongs to is called packet classification. Note that routing lookup is a particular case of packet
classification in which packets are classified based on one field: the destination address. In the
remainder of this section we discuss in more detail routing lookup and packet classification.

Routing Lookup With routing lookup, each router maintains a table, called routing table, that maps
each IP address to an output interface. At the minimum, each entry in the routing table consists of
two fields. The first field contains an address prefix, and the second field contains the identifier of
an output interface. The address prefix specifies the range of all IP addresses that share the same
prefix. Upon a packet arrival, the router searches its routing table for the longest prefix that matches
the packet's destination address, and then forwards the packet to the output interface specified by
the second field in the same entry. Thus, routing lookup consists of a search operation that retrieves
the longest prefix match.

To minimize the size of the routing table, IP addresses are assigned in blocks based on their pre-
fixes [41]. As a result, the size of the largest routing tables today is about 70,000 entries [122], which
is three orders of magnitude smaller than the total number of hosts, which is about 72 million [89].

Traditional algorithms to implement the routing lookup are based on Patricia tries [72]. In the
simplest form, Patricia tries are binary trees in which each node represents a binary string that
encodes the path from the tree's root to that node. As an example, consider such a tree in which all
left branches are labeled by 0, and all right branches are labeled by 1. Then, string 010 corresponds
to the node that can be reached by walking down the tree from the root, first along the left branch,
then along the right branch, and finally along the left branch. In the case of Patricia tries used to
implement routing lookup, each leaf node represents an address prefix. Since the height of the tree
is bounded by the address size s, the worst case time complexity of the lookup operation is O(s).
However, recent developments have significantly reduced this complexity. In particular, Waldvogel
et al. [115] proposes a routing lookup algorithm that scales with the logarithm of the address size,
while Degermark et al. [30] proposes a routing lookup algorithm tuned for IPv4 that takes less than
100 instructions on an Alpha processor, and uses only up to eight memory references. Furthermore,
by using a hardware implementation, Gupta et al. [50] proposes a pipelined architecture that can
perform a routing lookup every memory cycle. However, these improvements do not come for free.
The complexity of updating the routing table in these algorithms is much higher than in the case
of the algorithms based on Patricia tries. Nevertheless, this tradeoff is justified by the fact that, in

15

practice, updates are much less frequent than lookups.
In summary, today it is possible to perform a routing lookup at the line speed, that is, without

slowing down a router that otherwise performs only packet queuing and dequeuing. Furthermore,
this is expected to remain true in the foreseeable future. Even if the Internet continues to expand at
its current rate, due to address aggregation, the routing tables are likely to remain relatively small.
Assuming that the current ratio between the number of hosts and the size of the routing tables will
not change, and that, as predicted, the number of hosts will reach one billion by 2008 [88], we
expect that routing table size will increase by a factor of about 16 over the next eight years. While
this increase might seem considerable, it should be more than compensated for by the increase in
computer processing power and memory capacity. Indeed, according to Moore's law, during the
same time span the semiconductor performances are expected to improve 40 times.

Packet Classification Current proposed solutions to provide Quality of Service (QoS) such as
bandwidth and delay guarantees, require routers to maintain and manage per flow state. That is,
upon a packet arrival, the router has to classify it to the class or flow the packet belongs to. A
class is usually denned by a filter. A filter consists of a set of partially specified fields that define a
region in the packet space. Common fields used for packet classification are source and destination
IP addresses, source and destination port numbers, and the protocol type. An example of filter is
(src-addr = 128.16.120.x, dst.addr = 234.16.120.x, dst.port = x, srcport =1000-1200,
prototype = x), where x stands for "don't care". This filter represents the entire traffic going
from subnet 123.16.120.x to subnet 234.16.120.x with the destination port in the range
1000-12 00. As an example, the packet identified by {src-addr = 123.16.120.12, dst.addr =
234.16.120.2, dst-port = 21, srcport =1080, protoJype = TCP) belongs to this class, while
a packet sent by a host with the IP address 15.14.51.12 does not. It is worth noting that routing
is just a particular case of packet classification, in which each filter is specified by only one field:
dst-addr.

It should come as no surprise that the classification problem is inherently difficult. Current
solutions [51, 66, 96, 97] work well only for a relatively small number of classes, i.e., no more than
several thousand. This is because, as noted by Gupta and McKeown [51], the packet classification
problem is similar to the point location problem in the domain of computation geometry. Given
a point in an F dimensional space, this problem asks to find the enclosing region among a set of
regions. In the case of non-overlapping regions, the best bounds for n regions in an F dimensional
space are O(logn) in time and 0(nF) in space, or, alternatively, 0(logF_1 n) in time and 0(n) in
space. This suggests a clear trade-off between space and time complexities. It also suggests that it is
very hard to simultaneously achieve both speed and efficient memory usage. Worse yet, the packet
classification problem is even more difficult than the traditional point location problem as it allows
class (region) overlapping.

2.2.2.2 Buffer Management

IP routers are based on a store-and-forward architecture, i.e., when a packet arrives at a router, the
packet is first stored in a buffer, and then forwarded. Since, in practice, buffers are finite, the routers
have to cope with the possibility of packet loss. Even with infinite buffer capacity, there might be

16

the need to drop packets, as some congestion control schemes, such as TCP, rely on packet loss to
detect network congestion.

Any buffer management scheme has to answer two questions: (1) when is a packet dropped?,
and (2) which packet is dropped? In addition, per flow buffer management schemes have to answer
a third question: (3) which queue to drop from? Examples of policies that answer the first question
are: drop a packet when the buffer overflows (e.g., drop-tail), or when the average occupancy of the
buffer exceeds some threshold. Examples of policies that answer the second question are: drop the
last packet in the queue, the first packet in the queue, or a random packet. Finally, an example of
policy that answers the last question is to drop a packet from the longest queue.

While simple network services can be implemented by using a single queue which is shared
by all flows, solutions that provide more powerful services such as per flow bandwidth and delay
guarantees require routers to maintain and manage a separate queue for each flow. In this case,
the most expensive operation is usually to answer question (3), that is, to choose the queue to drop
from. As an example, an algorithm that implements a policy that drops the packet from the longest
queue has O(logn) complexity, where n is the number of non-empty queues. However, in practice,
this complexity can be significantly reduced by grouping the queues that have the same size, or by
approximating the algorithm [108].

2.2.2.3 Packet Scheduling

The job of the packet scheduler is to decide what packet to transmit, if any, when the output link
becomes idle. In routers that maintain per flow state this is accomplished in two steps: (1) select a
flow that has a packet to send, and (2) transmit a packet from the flow's queue.

Packet scheduling disciplines are classified into two broad categories: work conserving and
non-work conserving. In a work conserving discipline, the output link is busy as long as there is
at least one packet in the system destined for that output. In contrast, in a non-work conserving
discipline it is possible for an output link to be idle, despite the fact that there are packets in the
system destined for that output. Virtually all routers in today's Internet are work-conserving, and
implement a simple FIFO scheduling discipline. However, solutions to support better services than
best effort, such as bandwidth and delay guarantees, require more sophisticated packet scheduling
schemes. Examples of such schemes that are work conserving are: Static Priority [123], Weighted
Round Robin [52], Virtual Clock [127], Weighted Fair Queueing [31], and Delay Earliest Deadline
Due [124]. Similarly, examples of non-work conserving disciplines are: Stop-and-Go [44], Jitter-
Virtual Clock [126], Hierarchical Round Robin [63], and Rate Controlled Static Priority [123].

Many of the simpler disciplines such as FIFO, Static Priority, and Weighted Round Robin can
be easily implemented by constant time algorithms, i.e., algorithms that take 0(1) time to process
each packet. In contrast, the more sophisticated scheduling disciplines such as Virtual Clock and
Weighted Fair Queueing are significantly more complex to implement. In general, the algorithms
to implement these disciplines associate with each flow a unique parameter that is used to select
the flow to be served. Examples of such a parameter are the flow's priority, and the deadline of
the packet at the head of the queue. Flow selection is usually implemented by selecting the flow
with the largest or the smallest value. This can be accomplished by maintaining a priority queue
data structure in which the time complexity of selecting a flow is 0(log n), where n represents the

17

number of flows in the queue.
Non-work-conserving disciplines, as well as some of the more complex work-conserving dis-

ciplines, may employ a second parameter. The purpose of the second parameter is to determine
whether the flow with a non-empty queue is allowed to send or not. An example of such a param-
eter is the eligible time. The packet at the head of the queue can be transmitted only if its eligible
time is smaller or equal to the system time. Obviously, the addition of a second parameter increases
the implementation complexity. In many cases, the implementation is divided into two parts: a
rate controller that stores packets until they become eligible, and a scheduler that selects the flow's
packet to be transmitted based on the first parameter (e.g., deadline). Since the rate controller is
usually implemented by constant time algorithms [10], the overall complexity of selecting a packet
is generally dominated by the scheduling algorithm.

Once a flow is selected, one of its packets is transmitted - usually the packet at the head of the
queue - and the parameter(s) associated with the flow are eventually updated.

2.2.3 Control Path

The control path consists of all functions and operations performed by the network to set up and
maintain the state required by the data path. These functions are implemented by routing and sig-
naling protocols.

2.2.3.1 Routing Protocol

The puipose of routing protocols is to set up and maintain routing tables of all routers in a network.
Routing protocols are implemented by distributed algorithms that try to learn the reachability of any
host in the network. In the Internet, routing protocols are organized in a two level hierarchy.

At the higher level, the Internet consists of a large number of interconnected autonomous sys-
tems (ASs). An AS represents a distinct routing domain, which is usually administrated by a single
organization such as a company or university. ASs are connected via gateways, which use inter-
domain routing protocols to exchange routing information about which hosts are reachable by each
AS. As a result, each gateway constructs a routing table that maps each IP address to a neighbor AS
that knows a path to that IP address. The most common inter-domain routing protocol in use today
is Border Gateway Protocol (BGP) [86].

At the lower level within an AS, routers communicate with each other using an //?fra-domain
routing protocol. The purpose of these protocols is to enable routers to exchange locally obtained
information so that all routers within an AS have coherent and up to date information needed to
reach any host within the AS. Examples of intra-domain routing protocols are Routing Information
Protocol (RIP) [54], and Open Shortest Path First (OSPF) [73].

The division of routing protocols into intra- and inter-domain is crucial for the scalability of the
Internet. On one hand, this allows the deployment of sophisticated inter-routing protocols which can
gather an accurate picture of the host reachability within an AS. On the other hand, the inter-domain
routing protocols present a much coarser information about host reachability. Unlike intra-domain
routing protocols that specify the path at the router granularity, these protocols specify the path at
the AS granularity. This tradeoff gives an organization maximum flexibility in managing its own
resources, without compromising routing scalability at the level of the entire Internet. Some key

18

factors affecting routing scalability, as well as some basic principles of designing scalable routing
protocols are presented by Yo [122].

In summary, as proved by the Internet's own existence, the hierarchical routing architecture is
both scalable and robust. However, it should be noted that one of the main motivations behind these
desirable properties is the weak semantic of the best effort service. The best effort service does not
provide any reliability or timeliness guarantees. As long as a "reasonable" number of packets reach
their destinations, packet loss and packet reordering are acceptable. As a result, route changes,
route oscillations, or even router failures do not necessary compromise the service. In contrast, with
stronger service semantics such as the guaranteed service, existing routing protocols are not good
enough. The next section discusses these issues in more detail.

2.2.3.2 Signaling Protocol

To implement more sophisticated services such as per flow delay and bandwidth guarantees, we
need the ability to perform admission control and route pinning. The task of admission control
is to reserve enough resources on the path from source to destination in order to meet the service
requirements. In turn, route pinning makes sure that all packets of the flow traverse the path on
which resources have been reserved. Traditionally, these two functionalities are implemented by
signalling protocols such as Tenet Real-Time Channel Administration Protocol (RCAP) [8, 34], or
RSVP [128]. The complexity of signaling protocols is primary due to the difficulty of maintaining
the state consistent in a distributed environment. In the remainder of this section we discus this issue
in the context of both admission control and route pinning.

Admission Control Admission control makes sure that there are enough network resources on
the path from source to destination to meet the service requirements, such as delay and bandwidth
guarantees. To better understand the issues with admission control consider the following exam-
ple. Assume host A requests bandwidth reservation for a flow that has destination B. One possible
method to achieve this is to send a control message embedding the reservation request along the path
from A to B. Upon receiving this message, each router along the path checks whether it has enough
resources to accept the reservation. If it does, it allocates the required resources and then forwards
the message. When host B receives this message, it sends back an acknowledgement to A. The reser-
vation is considered successful if and only if all routers along the path have accepted it; otherwise
the reservation is rejected. While simple, this procedure does not account for various failures such
as packet loss and partial reservation failures. Partial reservation failures occur when only a subset
of routers along the path accept the reservation. In this case, the protocol has to undo the reservation
at the routers that have accepted it. To handle packet loss, when a router receives a reservation
request message, the router has to be able to tell whether it is a duplicate of a message already pro-
cessed or not. To handle partial reservation failures, a router needs to remember the decision made
for the reservation request in a previous pass. For these reasons, all existing solutions maintain per
flow reservation state, be it hard state as in ATM UNI [1], Tenet Real-Time Channel Administration
Protocol (RCAP) [8, 34], or soft state as in RSVP [128]. However, maintaining consistent and dy-
namic state in a distributed environment is in itself a challenging problem. Fundamentally, this is
because admission control assumes a transaction-like semantic, which is very difficult to achieve in

19

a distributed system in the presence of message losses and arbitrary delays [4, 117].

Route Pinning Once a flow's reservation request is accepted, the source can start sending data
packets. However, to meet the performance requirements negotiated during the admission control,
we have to make sure that all packets of a flow traverse the same path. Otherwise, a packet can
traverse a path that does not have enough resources, which will lead to service violation. The oper-
ation of binding a flow to a path (route) is called route pinning. Whenever the underlying routing
protocol does not support route pinning, this functionality can be provided by the signalling proto-
cols together with the admission control. For example, in RSVP, when a node accepts a reservation,
it also stores the next hop on the flow's path in its database. Since these protocols maintain per flow
state, augmenting this state to store the next hop does not increase their complexity.

Alternatively, route pinning can be separated from admission control. One example is ATM [12]
whose routing protocol natively supports route pinning. Another example is Multi-Protocol Label
Switching (MPLS), recently proposed to perform traffic engineering in the Internet [17]. In both
ATM and MPLS, the main idea is to perform routing based on identifiers that have local meaning,
instead of identifiers that have global meaning such as IP addresses. Each router maintains a table
which maps each local identifier (label) to an output interface. Each packet carries a label that
specifies how the packet is to be routed at the next hop. Before forwarding a packet, a router
replaces the existing label with a new label that is used by the next hop to route the packet. Note
that this requires a router to also store the labels used by its neighbors. Besides route pinning, one
other major advantage of routing based on labels, instead of IP addresses, is performance. Instead
of searching for the longest prefix match, we only have to search for an exact match, which is much
faster to implement.

On the downside, these routing schemes need a special protocol to distribute and maintain labels
consistent. While in this case routers do not need to maintain per flow state, they still need to
maintain per path state. However, in practice, the number of paths that can traverse a core router can
be still quite large. In the worst case, this number increases with the square of the number of edge
nodes. Thus, in the case of an AS that has hundreds of edge nodes, this number can be on the order
of hundred of thousands. Finally, label distribution protocols have to address the same challenges as
other distributed algorithms that need to maintain state consistent in the presence of link and router
failures, such as Tenet RCAP and RSVP.

2.2.4 Discussion

Among all the operations performed by routers on the data path, packet classification is arguably
the most complex. As discussed in Section 2.2.2.1, algorithms to solve this problem require at least
O(logn) time and 0(nF) space, or, alternatively, at least 0(logF_1) time and 0(n) space, where
n represents the number of classes, and F represents the number of fields in a filter.

In contrast, most buffer management and packet scheduling algorithms have 0(n) space com-
plexity and O(logn) time complexity. By trading resource utilization for speed, we can further
reduce the time complexity to O(loglogn) or even 0(1). For example, [98] proposes an imple-
mentation of Weighted Fair Queueing with 0(1) time complexity.

The important point to note here is that our DPS technique trivially eliminates the most complex

20

operation performed by core routers on the data path: packet classification. This is because, with
DPS, the state required to process packets is carried by the packets themselves, instead of being
maintained by core routers (see Section 1.1). Consequently core routers do not need to perform any
packet classification.

On the control path the most complex operation is arguably the admission control for which
current solutions require routers to maintain per flow state. The main difficulty is to maintain the
consistency of the distributed state in the presence of packet losses, arbitrary packet delays, and
router failures.

Again, the main benefit of using DPS is that by eliminating the need for core routers to maintain
per flow state, we trivially eliminate the need of maintaining this state consistent.

2.3 Network Service Taxonomy

In this section we present a general taxonomy of services in a packet switching network, and then
use this taxonomy to describe the traditional best effort service, and the recently proposed services
to enhance today's Internet. We then describe and compare the existing solutions to implement these
services.

The primary goal of a network is to provide services to its end-hosts. Services are usually
classified along two axes: (a) the granularity of the network abstraction to which the service applies,
and (b) the "quality" of the service.

As the name suggests, packet switching networks are centered around the packet abstraction. A
packet represents the smallest piece of information that can be routed through the network. At a
higher level of granularity, we have the concept of a flow. A flow represents a subset of packets that
travel between two nodes in the network. If these nodes are routers, we will also use the terminology
of macro-flow. An example of a flow is the traffic of a TCP connection, while an example of a macro-
flow is the traffic between two sub-networks. At an even higher level of abstraction, we have traffic
aggregates over multiple destinations or sources. Examples of traffic aggregates are the entire web
traffic of a user, or the entire outgoing/incoming traffic of an organization.

Along the second axis, a service is described by a set of properties that can be either qualitative
or quantitative. Examples of qualitative properties are reliability and isolation. Isolation refers to
the ability of the network to protect the traffic of a flow against malicious sources that may flood
the network. Quantitative properties are described in terms of performance parameters such as
bandwidth, delay, delay jitter and loss probability. Usually, these parameters are reported on an
end-to-end basis. For example, the delay represents the total time it takes a packet to travel from
source to its destination. Similarly, the delay jitter represents the maximum difference between the
maximum and the minimum end-to-end delays experienced by any two packets of a flow. Note that
the two quantitative and qualitative properties are not necessary orthogonal. For example, a service
that guarantees a zero loss probability is trivially a reliable service.

Quantitative services can be further classified into absolute and relative services. Absolute
services specify precise quantities that bound the service performance parameters such as worst case
bandwidth or delay. In contrast, relative services specify the relative difference or ratio between the
performance parameters. Examples of absolute services are: "flow A is guaranteed a bandwidth of
2 Mbps", and "the loss probability of flow A is less than 10-6". Examples of relative services are:

21

Service Network Abstraction Service Description
Best effort packet connectivity

Flow Protection flow protect well-behaved flows
against ill-behaved ones

Intserv Guaranteed flow bandwidth and delay guarantees
Controlled-Load flow "weak" bandwidth guarantees

Diffserv Premium macro-flow bandwidth guarantees
Assured traffic aggregate over multiple

destinations/sources
"weak" bandwidth guarantees

Table 2.1: A taxonomy of services in IP networks.

"flow A has twice the bandwidth of flow B", and "flow A has a packet loss twice as small as flow
B".

Next, we discuss some of the most prominent services proposed in the context of the Internet:
(1) the best effort service, (2) flow protection to provide network support for congestion control, (3)
Integrated Services, and (4) Differentiated Services. Table 2.1 shows a taxonomy of these services.

2.3.1 Best Effort Service

Today's Internet provides one simple service: the best effort service. This is fundamentally a con-
nectivity service which allows any two hosts in the Internet to communicate by exchanging packets.
As the name suggests, this service does not make any promise of whether a packet is actually de-
livered to the destination, or whether the packets are delivered in order or not. Such a minimalist
service requires little support from routers. In general, routers just forward packets on a First-In
First-Out (FIFO) basis. Thus, excepting the routing state, which is highly aggregated, a router does
not need to maintain and manage any fine grained state about traffic. This simple architecture has
several desirable properties:

Scalability Since the only state maintained by routers is the routing state, today's Internet
architecture is highly scalable. In particular, address aggregation allows routers to maintain
little state as compared to the number of hosts in the network. For example, a typical router
today stores less than 70.000 entries [122] which is several orders of magnitude lower than
the number of hosts in the Internet, which is around 72 million [89].

Robustness One of the most important goals in designing the Internet was robustness [22].
In particular, the requirement was that two end-hosts should be able to communicate despite
router and link failures, and/or network reconfiguration. The only case in which two hosts
can no longer communicate is when the network between the two hosts is partitioned. The
fact that the state of a flow is maintained only by end-hosts and not by routers makes it
significantly easier to ensure robustness, as router failures do not compromise the flow state.
Had the flow state been kept by routers, complex algorithms to replicate and restore this state
would be needed to handle failures. Furthermore, such algorithms would be able to provide

22

protection against failures only if the number of routers failing is smaller than the number of
replicas that failed.

There is one caveat with respect to the Internet robustness though. It can be argued that, to
a large extent, today's Internet is robust mainly because it provides a weak service semantic.
Indeed, as long as the "majority" of packets still reach their destination, router or link failures
do not compromise the service. In contrast, it is fundamentally more difficult to achieve
robustness in the case of a strong semantic service such as the guaranteed service. In this
case, a router or link failure can easily compromise the service. Note that even if back-up
paths were used to restore the service, time sensitive parameters such as delay may still be
affected during the recovery process.

Performance The simplicity of the router design allows efficient implementation at very high
speeds. Usually, these routers implement the FIFO scheduling discipline and drop-tail buffer
management, which are both constant-time operations.

2.3.2 Flow Protection: Network Support for Congestion Control

Because of their reliance on statistical multiplexing, data networks such as the Internet must pro-
vide mechanisms to control congestion. The current Internet relies on end-to-end congestion control
mechanisms in which senders reduce their transmission rates whenever they detect congestion in the
network. The most widely utilized form of congestion control is the additive-increase/multiplicative-
decrease scheme implemented by TCP [57, 83], a scheme which has proven to be highly success-
ful in preventing congestion collapse2. However, the viability of this approach depends on one
fundamental assumption: all end-hosts cooperate by implementing equivalent congestion control
algorithms.

While this was a reasonable assumption when the Internet was primarily used by the research
community, and the vast majority of traffic was TCP based, this is no longer true today. The emer-
gence of new multimedia applications, such IP telephony, audio and video streaming, which use
more aggressive UDP based protocols, negatively affects the still predominant TCP traffic. Al-
though there are considerable ongoing efforts to develop protocols for the new applications that are
TCP friendly [6, 84, 85] - protocols that implement TCP like congestion control algorithms - these
efforts fail to address the fundamental problem: in an economic environment cooperation is not
always optimal. In particular, in case of congestion, the natural incentive of a sender is to send more
traffic in the hope that it will force other senders to back-off, and as a result it will be able to use the
extra bandwidth. This incentive translates into a positive feed-back behavior, i.e., the more packets
that are dropped in the network, the more packets the user sends, which can ultimately lead to con-
gestion collapse. It is interesting to note that this problem resembles the "tragedies of commons"
problem, well known in the economic literature [53].

Two approaches were proposed to address this problem: (1) flow identification and (2) fair
bandwidth allocation. Both of these approaches require changes in the routers. In the following
sections, we discuss these approaches in more detail.

2Congestion collapse occurs when sources increase their sending rates when they experience losses, in the hope that
more of their packets will get through. Eventually, this will lead to a further increase in the packet loss, and result in
consistent buffer overflow at the congested routers.

23

2.3.2.1 Identification Approach

The main idea of this approach, advocated by Floyd and Fall [36], is to identify and then punish the
flows that are ill-behaved. In short, routers employ a set of tests to identify ill-behaved flows. When
a flow is identified as being ill-behaved, it is punished by preferentially having its packets dropped
until its allocated bandwidth becomes smaller than the bandwidth allocated to a well-behaved flow.
In this way, the punishment creates the incentive for end-hosts to send well-behaved traffic. The
obvious question is how to identify an ill-behaved flow.

To answer this question, Floyd and Fall [36] propose a suite of tests, which tiy to detect whether
a flow is TCP friendly or not, i.e., whether the behavior of a flow is consistent to the behavior of a
TCP flow under similar conditions. In particular, these tests estimate the round-trip time (RTT) and
the packet dropping probability, and then check whether the throughput of a flow and its dynamics
are consistent to those of a TCP flow having the same RTT and experiencing the same packet
dropping probability.

While this approach can be efficiently implemented, it has two significant drawbacks. First,
these tests are generally inaccurate as they are based on parameters that are very hard to estimate.
For example, it is very difficult if not impossible to accurately estimate the RTT of an arbitrary flow
based only on the local information available at the router, as assumed by Floyd and Fall [36]. 3

Because of this, current proposals simply assume that the RTT is twice the propagation delay on the
outgoing link. Clearly, depending on the router position on the path of the flow, this procedure can
lead to major under-estimations, negatively impacting the overall accuracy of these tests.

Second, this approach makes the implicit assumption that all existing and future congestion
protocol algorithms are going to be TCP friendly. From an architectural standpoint, this assumption
considerably reduces the freedom of designing and building new protocols. This can have significant
implications, as the freedom allowed by the original datagram service, one of the key properties that
has contributed to the success of the Internet, is lost.

2.3.2.2 Allocation Approach

In this approach routers employ special mechanisms that allocate bandwidth in a fair manner. Fair
bandwidth allocation protects well-behaved flows from ill-behaved ones, and is typically achieved
by using per-flow queueing mechanisms such as Fair Queueing [31, 79] and its many variants [10,
45, 94].

Unlike the identification approach, the allocation approach allows various congestion policies
to coexist. This is because no matter how much traffic a source will send in the network, it is not
going to get more than its fair allocation. Unfortunately, this flexibility does not come for free. Fair
allocation mechanisms are complex to implement, as they inherently require routers to maintain
state and perform operations on a per flow basis. In contrast, with the identification approach,
routers need to maintain state only for the flows which are punished, i.e., the ill-behaved flows.

3While a possible solution would be to have the end-hosts sending the estimated RTT to routers along the flow's path,
there are two problems with this approach. First it requires that changes be made to the end-hosts, and second, there is
the question of whether a router can trust this information.

24

2.3.3 Integrated Services

As new applications such as IP telephony, video-conferencing, audio and video streaming, and dis-
tributed games are deployed in the Internet, services more sophisticated than best effort are needed.
Unlike previous applications such as file transfer, these new applications have much stricter timeli-
ness and bandwidth requirements. For example, to enable natural interaction, the end-to-end delay
needs to be below human perception. Previous studies concluded that for natural hearing this delay
should be around 100 ms [64]. Since in a global network the propagation delay alone is about 100
ms, meeting such tight delay requirements is a very challenging task [7].

To support these new applications, IETF has proposed a new service model called Integrated
Services or Intserv [82]. Intserv uses flow abstraction. Two services were defined within the Intserv
framework: Guaranteed and Controlled-Load services.

2.3.3.1 Guaranteed Service

Guaranteed service is the strongest semantic service proposed in the context of the Internet so
far [93]. Guaranteed service has the ability to provide per flow bandwidth and delay guarantees.
In particular, a flow can be guaranteed a minimum bandwidth, and, given the arrival process of
the flow, a maximum end-to-end delay. This way, Guaranteed service provides ideal support for
real-time applications such as IP telephony.

However, this comes at the cost of a significant increase in complexity: current solutions require
routers to maintain and manage per flow state on both data and control paths. On the data path, a
router has to perform per flow classification, buffer management and scheduling. On the control
path, routers have to maintain per flow forwarding state and perform per flow admission control.
During the admission control, each router on the flow's path reserves network resources, such as the
link capacity and buffer space, to make sure that the flow's bandwidth and delay requirements are
met.

2.3.3.2 Controlled-Load Service

For applications that do not require strict service guarantees, IETF has proposed a weaker se-
mantic service within the Intserv framework: the Controlled-Load service. As defined by Wro-
clawski [121], the Controlled-Load service "tightly approximates the behavior visible to applica-
tions receiving best effort service *under unloaded conditions* from the same series of network
elements". More precisely, the Controlled-Load service ensures that (1) the packet loss is not sig-
nificantly larger than the basic error rate of the transmission medium, and (2) the end-to-end delay
experienced by a very large percentage of packets does not greatly exceed the end-to-end propaga-
tion delay. The Controlled-Load service is intended to provide better support for a broad class of
applications that have been developed for use in today's Internet. Among the applications that fall
into this class are the "adaptive and real-time applications" such as video and audio streaming.

While the Controlled-Load service still requires routers to perform per flow admission control
on the control path, and packet classification, buffer management, and scheduling on the data path,
some of these operations can be significantly simplified. For example, the scheduling can be imple-
mented by a simply weighted round robin discipline, which has 0(1) time complexity. Thus, the

25

Controlled-Load trades a lower quality of service for a simpler implementation.
In summary, although Intserv provides much more powerful and flexible services than today's

Internet - services that would answer the needs of the new emerging applications - concerns with
respect to its complexity and scalability have hampered its adoption. In fact, except in small test-
beds, Intserv solutions have yet to be deployed.

2.3.4 Differentiated Services

To alleviate the scalability problems that have plagued Intserv, recently a new service model, called
Differentiated Services (Diffserv), has been proposed [13, 75]. The Diffserv architecture differen-
tiates between edge and core routers. Edge routers maintain per flow or per aggregate state. Core
routers maintain state only for a veiy small number of traffic classes; they do not maintain any fine
grained state about the traffic. Each packet carries in its header a six bit field, called the Differ-
entiated Service (DS) field, which specifies the class to which the packet belongs. The DS field
is initialized by the ingress router upon the packet arrival. In turn, core routers use the DS field
to classify and process the packets. Since the number of classes at a core router is very small,
packet processing can be very efficiently implemented. This makes the Diffserv architecture highly
scalable.

Two services were proposed in the context of the Diffserv architecture: Assured and Premium
services.

2.3.4.1 Assured Service

The Assured service [24, 55] is a large granularity service, that is, the service is associated with
the aggregate traffic of a customer from/to multiple hosts. The service contract between a customer
and the Diffserv network or ISP is called the sen'ice profile. A service profile is usually defined in
terms of absolute bandwidth and relative loss. As an example, an ISP can provide two service levels
(classes): silver and gold, where the gold service has the lowest loss probability. A possible service
profile would offer transmission of 10 Mbps of customer's web traffic by using the silver service.

In the Assured service model, ingress routers perform three functions. They (a) monitor the
aggregate traffic from each user to make sure that no user exceeds its traffic profile, (b) downgrade
the user's traffic to a lower service level if the user exceeds its profile, and (c) initialize the DS field
in the packet headers with the code-point associated to the service. Thus, ingress routers need to
keep state for each profile or user. In contrast, core routers do not need to keep such state, as their
function reduces to process the packets based on the code-points earned by the packets.

While the fixed bandwidth profile makes the Assured service very compelling, it also makes it
very challenging to implement. This is due to a fundamental conflict between maximizing resource
utilization and achieving high service assurance. Since a service profile does not specify how the
traffic is distributed through the network, the network has to make conservative assumptions to
achieve high service assurance. At the limit, to guarantee zero loss, the network has to assume that
the entire assured traffic traverses the slowest link in the network! Clearly, such an assumption leads
to a very low resource utilization, which can be unacceptable.

An alternate approach is to define service profiles in relative rather than absolute terms. Such an
example is the User-Share Differentiation (USD) approach [116]. With USD each user is assigned

26

a share (weight) that specifies the relative fraction of the capacity that a user is entitled to receive
on each link in the network. This is equivalent to a network in which the capacity of each link
is allocated by a Weighted Fair Queueing algorithm. The problem with such an approach is that
the core routers need to maintain per user state, which can negate the scalability advantage of the
Diffserv architecture. In addition, with USD, there is little correlation between the share of a user
and the aggregate throughput it will receive. For example, two users, that are assigned the same share
can see drastically different aggregate throughputs. A user that has traffic for many destinations
(thus traverse many different paths) can potentially receive much higher aggregate throughput than
a user that has traffic for only a few destinations.

2.3.4.2 Premium Service

Unlike the Assured service which can be associated with an aggregated traffic to/from multiple
hosts, Premium service provides the equivalent of a dedicated link of fixed bandwidth between two
edge routers [60]. To implement this service, the network has to perform admission control. The
current proposals assume a centralized architecture: each domain is associated with a database,
called Bandwidth Broker (BB), that has complete knowledge about the entire domain. To set up a
flow across a domain, the domain's BB checks first whether there are enough resources between the
two end points of the flow across the domain. If yes, the request is granted and the BB's database is
updated accordingly.

On the data-path, ingress routers perform two functions. They (a) shape the traffic associated
to a service profile, that is, make sure that the traffic does not exceed the profile by delaying the
excess packets4, and (b) insert the Premium service code-point in the DS-files. In turn, core routers
forward the premium traffic with high priority.

As a result, the Premium service can provide effective support for real-time traffic. A natural
question to ask is what is the difference between the Premium service and the Guaranteed service
proposed by Intserv. Though at the surface they are quite similar, there are two important differences
between them.

First, while the Guaranteed service can provide both per flow bandwidth and delay differentia-
tion, the Premium service can provide only per flow bandwidth differentiation. This is because core
routers do not differentiate between premium packets on a per flow basis - all premium packets are
simply processed in a FIFO order. Thus, the only possibility to meet different delay requirements
for different flows is to guarantee the smallest delay required by any flow to all flows. Unfortunately,
this can result in very low resource utilization for the premium traffic. In particular, as shown by
Stoica and Zhang [105], even if the fraction that can be allocated to premium traffic on every link in
the network is very low (e.g., 10%), the worst case queueing delay across a large network (e.g., 15
routers) can be relatively large (e.g., 240 ms). In contrast, Intserv can achieve both higher resource
utilization and tighter delay bounds, by better matching flow requirements to resource usage.

Second, the centralized bandwidth broker architecture proposed to perform admission control
in the case of the Premium service is adequate only for coarse grained flows that are active over
long time scales. In contrast, because the Guaranteed service uses a distributed admission control

4Note that this is different from the Assured service, where the excess traffic is let into the network, but its priority is
downgraded.

27

architecture, it can support fine grained reservations over small time scales.
The price paid by the Guaranteed service is again complexity. Unlike the Premium service, the

Guaranteed service requires routers to maintain per flow state on both the data and the control paths.

2.4 Summary

In the first part of this chapter, we have discussed the IP network model. In particular we have
presented the router architecture and discussed the implementation complexities of both the data
and control paths.

In the second part of this chapter, we have presented the best-known proposals to improve the
best effort service in today's Internet: (a) flow protection to provide effective support for congestion
control, (b) Integrated Services (Intserv) model, and (c) Differentiated Services (Diffserv) model.
Of all these models, only Diffserv admits a known scalable implementation, as core routers are
not required to maintain any per flow state. However, to achieve this, Diffserv makes significant
compromises. In particular, the Assured service cannot achieve simultaneously high service assur-
ance and high resource utilization. Similarly, the Premium service cannot provide per flow delay
differentiation, and it is not adequate for fine grained and short term reservations.

In this dissertation we address these shortcomings by developing a novel solution that can im-
plement all of the above per flow services (i.e., flow protection, guaranteed and controlled-load
services) in the Internet without compromising its scalability. In the next chapter, we present an
overview of our solution.

28

Chapter 3

Overview

The main contribution of this dissertation is to provide the first solution that makes it possible to
implement services as powerful and as flexible as the ones implemented by a stateful network using
a stateless core network architecture. In this chapter, we give an overview of our solution and present
a perspective of how this solution compares to the two most prominent solutions proposed in the
literature to provide better services in the Internet: Integrated Services and Differentiated Services.

The chapter is organized as follows. Section 3.1 describes the main components of our solution
and uses three examples to illustrate the ability of our key technique, called Dynamic Packet State
(DPS), to provide per flow functionalities in a stateless core network. Section 3.2 briefly describes
our implementation prototype, and gives a simple example to illustrate the capabilities of our im-
plementation. Section 3.3 presents a comparison between our solution and the two main network
architectures proposed by Internet Engineering Task Force (IETF) to provide more sophisticated
services in the Internet: Integrated Services and Differentiated Services. Finally, Section 3.4 sum-
marizes our findings.

3.1 Solution Overview

This section presents the three main components of our solution. Section 3.1.1 defines the Stateless
Core (SCORE) network architecture, which represents the basic building block of our solution.
Section 3.1.2 presents a novel approach that allows us to emulate/approximate the service provided
by a stateful network with a SCORE network. Section 3.1.3 describes the key technique we use
to implement this approach: Dynamic Packet State (DPS). To illustrate this technique we sketch
how it can be used to implement three per flow mechanisms in a SCORE network: (1) approximate
Fair Queueing scheduling discipline, (2) provide per flow admission control, and (3) perform route
pinning.

3.1.1 The Stateless Core (SCORE) Network Architecture

The basic building block of our solution is called Stateless Core (SCORE). Similar to a Diffserv
domain, a SCORE domain is a contiguous and trusted region of network in which only edge routers
maintain per flow state, while core routers maintain no per flow state (see Figure 1.1(b)). Since
edge routers usually run at much lower speeds and handle fewer flows than the core routers, this
architecture is highly scalable.

29

3.1.2 The "State-Elimination" Approach

Our ultimate goal is to provide better services in today's Internet without compromising its scalabil-
ity and robustness. To achieve this goal, we propose a two step approach, called "State-Elimination"
approach (see Figure 1.1). In the first step we define a reference stateful network that provides the
desired service. In the second step, we try to approximate or, if possible, to emulate the service
provided by the reference stateful network in a SCORE network. In this way we are able to pro-
vide services as powerful and as flexible as the ones implemented by stateful networks in a mostly
stateless network, i.e., in a SCORE network. In Chapters 4, 5 and 6, we illustrate this approach
by considering three of the most important services proposed to enhance today's Internet: flow
protection, guaranteed sendees, and relative senice differentiation.

We note that similar approaches have been proposed in the literature to approximate the func-
tionality of an idealized router that implements a bit-by-bit round-robin scheduling discipline with
a stateful router that forwards traffic on a per packet basis [10, 31, 45, 79]. However, our approach
differs from these approaches in two significant aspects. First, the state-elimination approach is con-
cerned with emulating the functionality of an entire network, rather than of a single router. Second,
unlike previous approaches that aim to approximate an idealized system with a stateful system, our
goal is to approximate the functionality of a stateful system with a stateless core system.

3.1.3 The Dynamic Packet State (DPS) Technique

DPS is the key technique that allows us to implement the above services in a SCORE network. The
main idea behind DPS is very simple: instead of having routers install and maintain per flow state,
have packets carry the per flow state. This state is inserted by ingress routers, which maintain per
flow state. In turn, a core router processes each incoming packet based on (1) the state earned in
the packet's header, and (2) the router's internal state. Before forwarding the packet to the next hop,
the core router updates both its internal state and the state in the packet's header (see Figure 1.2).
By using DPS to coordinate actions of edge and core routers along the path traversed by a flow,
distributed algorithms can be designed to approximate the behavior of a broad class of stateful
networks using networks in which core routers do not maintain per flow state.

To give an intuition of how the DPS technique is working, next we present three examples: (1)
approximates the Fair Queueing algorithm, (2) estimates the aggregate reservation for admission
control purposes, and (3) binds a flow to a particular path (i.e., perform route-pinning).

3.1.3.1 Example 1: Fair Bandwidth Allocation

Flow protection is one of the most desirable enhancements of today's best effort service. Flow pro-
tection allows diverse end-to-end congestion control schemes to seamlessly coexist in the Internet,
and protect well behaved traffic against malicious or ill behaved traffic. The solution of choice to
achieve flow protection is to have routers implement fair bandwidth allocation [31]. In an idealized
system in which a router can provide services at the bit granularity, fair bandwidth allocation can be
achieved by using a bit-by-bit round robin discipline.

For clarity, consider three flows with the arrival rates of 8, 6, and 2 bits per second (bps),
respectively, that share a 10 bps link. Assume that the traffic of each flow arrives one bit at a time,

30

flow 1

flow 2

flow 3

edge node

core node

flow 1

flow 2

flow 3

aJBJJjfciEU

Figure 3.1: Example illustrating the CSFQ algorithm at a core router. An output link with a capacity of
10 is shared by three flows with arrival rates of 8, 6, and 2, respectively. The fair rate of the output link in
this case is a = 4. Each arrival packet carries in its header the rate of the flow it belongs to. According to
Eq. (3.3) the dropping probability for flow 1 is 0.5, while for flow 2 it is 0.33. Dropped packets are indicated
by crosses. Before forwarding a packet, its header is updated to reflect the change in the flow's rate due to
packet dropping (see the packets at the right-hand side of the router).

and it is periodic with period 1/r, where r is the flow rate. Thus, during one second, exactly 16
bits are received, and exactly 10 bits can be transmitted. During each round, the scheduler transmits
exactly one bit form every flow that has a packet to send. Since in the worst case, flow 3 is visited
once every 3/10 sec, and it has an arrival rate of only one bit every 0.5 sec, it follows that all of
its traffic is served. This leaves the other two flows to share the rest of 8 bps of the link capacity.
Since arrival rates of both flows 1 and 2 are larger than half of the remaining capacity, each flow will
receive half of it, i.e., 4 bps. As a result, under the bit-by-bit round robin discipline, the three flows
are allocated bandwidth of 4, 4, and 2 bps, respectively. The maximum rate allocated to a flow on a
congestion link is called fair rate. In this example the fair rate is 4.

In general, given n flows that traverse a congested link of capacity, C, the fair rate a is defined
such that

^min(rj,a) = C, (3.1)

where r* represents the arrival rate of flow i. By applying this formula to the previous example, we
have min(8, a) + min(6, a) + min(2, a) = 10, which gives us a = 4. If the link is not congested,
that is, if Yä=i ri < C, the fair rate, a, is by convention defined as being the maximum among all
arrival rates.

Thus, with the bib-by-bit round robin, the service rate allocated to a flow, i, with the arrival rate,

n, is

min(ri,a). (3.2)

31

The first algorithm to approximate the bit-by-bit round robin in a packet system was proposed
by Demers et al. [31], and it is called Fair Queueing. Eq. (3.2) directly illustrates the protection
property of Fair Queueing, that is, a flow with enough demand is guaranteed to receive its fair rate
a, irrespective of the behavior of the other flows. To put it in another way, a flow cannot deny service
to other flows because no matter how much and what type of traffic it pumps into the network, it
will not get more than a on the congested link.

While fair queueing can fully provide flow protection, it is more complex to implement than tra-
ditional FIFO queueing with drop-tail, which is the most widely implemented and deployed mech-
anism in routers today. For each packet that arrives at the router, the routers needs to classify the
packet into a flow, update per flow state variables, and perform per flow scheduling.

Our goal is to eliminate this complexity from the network core by using a SCORE network
architecture to approximate the functionality of a reference network in which every router performs
Fair Queueing. In the following sections, we describe a DPS based algorithm, called Core-Stateless
Fair Queueing (CSFQ) that achieves this goal.

The key idea of CSFQ is to have each packet cany the rate estimate of the flow it belongs to.
Let ft denote the rate estimate earned by a packet of flow i. The rate estimate is computed by edge
routers and then inserted in the packet header. Upon receiving the packet, a core router forwards it
with the probability

p = min M. " J . (3.3)

and drops it with the probability 1 — p.
It is easy to see that by forwarding each packet with the probability p, the router effectively

allocates to flow, i, a rate r, x p = mint?",, o), which is exactly the rate the flow would receive
under Fair Queueing (see Eq. (3.2)). Up < 1, the router also updates the packet label to a. This is
to reflect the fact that when the flow's arrival rate is larger than a, the flow's rate after traversing the
link drops to a. (see Figure 3.1).

It is also easy to see that with CSFQ core routers do not require any per flow state. Upon packet
arrival, a core router needs to compute only the dropping probability, p, which depends exclusively
on the estimated rate earned by the packet, and the fair rate a that is locally computed by the router.
(In Chapter 4, we show that computing o does not require per flow state either.)

Figure 3.1 shows an example in which three flows with incoming rates of 8, 6, and 2, respec-
tively, share a link of capacity 10. Without going into details, we note that in this case a = 4. Then,
from Eq. (3.3), it follows that the forwarding probabilities of the three flows are 0.5, 0.66, and 1,
respectively. As a result, on the average, one out of two packets of flow 1, one out of three packets
of flow 2, and no packets of flow 3, are dropped. Note that before forwarding the packets of flows 1
and 2, the router updates the rate estimates in their headers to 4. This is to reflect the change of the
flow rates as a result of packet dropping.

3.1.3.2 Example 2: Per Flow Admission Control

In this example we consider the problem of performing per flow admission control. The role of
the admission control is to check whether there are enough resources on the data path to grant a
reservation request. For simplicity, we assume that admission control is limited to bandwidth. When

32

flow 1

flow 2 0

Q edge node

I | core node

flow 1 (rsv1 =5) _-^|«

flow 2 (rsv2 = 2)

T=10

Figure 3.2: Example illustrating the estimation of the aggregate reservation. Two flows with reservations
of 5, and 2, respectively, share a common link. Ingress routers initialize the header of each packet according
to Eq. (3.4). The aggregate reservation is estimated as the ratio between the sum of the values carried in
the packets' headers during an averaging time interval of length T. In this case the estimated reservation is
65/10 = 6.5.

a new flow makes a reservation request, each router on the path from source to destination checks
whether it has enough bandwidth to accommodate the new flow. If all routers can accommodate the
flow, then the reservation is granted.

It is easy to see that to decide whether a new reservation request rsv can be accepted or not,
a router needs only to know the current aggregate reservation, R, on the output link, that is, how
much bandwidth it has reserved so far. In particular, if the capacity of the output link is C, then the
router can accept a reservation, rsv, as long as rsv + R< C. Unfortunately, it turns out that main-
taining the aggregate reservation, R, in the presence of packet loss and partial reservation failures
is not trivial. Intuitively, this is because the admission control needs to implement transaction-like
semantics. A reservation is granted if and only if all routers along the path accept the reservation. If
a router cannot accept a reservation, then all routers that have accepted the reservation have to roll
back to the previous state, so they need to remember that state. Similarly, if a reservation request
message is lost, and the request is resent, then a router has to remember whether it has received
the original request, and if yes, whether the request was granted or denied. For all these reasons,
the current proposed solutions for admission control such as RSVP [128] and ATM UNI [1] require
routers to maintain per flow state.

In the remainder of this section we show that by using DPS it is possible to perform admission
control in a SCORE network, that is, without core routers maintaining any per flow state.

At the basis of our scheme lies a simple observation: if all flows were sending at their reserved
rates, then it is trivial to maintain the aggregate reservation R; each router only needs to measure
the rate of the aggregate traffic. Consider the example in Figure 3.2, and assume that flow 1 has
a reservation of 5 Kbps, and flow 2 has a reservation of 2 Kbps. If the two flows were sending
exactly at their reserved rates, i.e., flow 1 at 5 Kbps, and flow 2 at 2 Kbps, the hi-lighted router (see

33

Figure 3.2) can simply estimate the aggregate reservation of 7 Kbps, by measuring the rate of the
aggregate arrival traffic.

The obvious problem with the above scheme is that most of the time flows do not send at their
reserved rates. To address this problem, we associate a virtual length to each packet. The virtual
length is such that if the lengths of all packets of a flow where equal to their virtual lengths, then the
flow sends at its reserved rate. More precisely, the virtual length of a packet represents the amount of
traffic that the flow was entitled to send according to its reserved rate since the previous packet has
been transmitted. Let rsv, denote the reservation of flow i, and let i\ and f-+1 denote the departure
times of the j-th and (j + l)-th packets of flow i. Then the (j + l)-th packet will cany in its header
a virtual length

vlj+l =r.svj x {tj+l -t>). (3.4)

The virtual length of the first packet of the flow is simply the actual length of the packet. The
virtual length is computed and inserted in the packet header by the ingress router upon the packet
departure. In turn, core routers use the packet virtual lengths to estimate the aggregate reservation.
For illustration, consider again the example in Figure 3.2, where flow 1 has a reservation 7\swi of 5
Kbps. For the puipose of this example, we neglect the delay jitter, and assume that no packets are
dropped inside the core. Suppose the inter-arrival times of the first four packets of flow 1 are 2 sec,
3 sec, and 4 sec, respectively. Since in this case the packet inter-arrival times at core routers are
equal to the packet inter-departure times at the ingress, according to Eq. (3.3), the 2nd, 3rd, and 4th
packet of flow 1 will carry in their headers v(\ = rsvi x 2 = 10 Kb, vi\ = rsv\ x 3 = 15 Kb, and
vl\ = rsv] x 4 = 20 Kb, respectively.

Next, note that the sum of the virtual lengths, Bj(T), of all packets of flow i that arrive at a core
router during an interval of length T, provides a fair approximation of the amount of traffic that the
flow is entitled to send during time T at its resetted rate. Then, the reserved bandwidth of flow i,
can be estimated as

R, = ™
By extrapolation, a core router can estimate the aggregate reservation R. on the outgoing link

by simply computing B{T)/T, where B(T) represents the sum of the virtual lengths of all packets
that arrive during an interval of length T. Finally, it is worth noting that to perform this computation
core routers do not need to maintain any per flow state - they just need to maintain a global variable,
B{T), that is updated every time a new packet arrives.

In the example shown in Figure 3.2, assume an averaging interval T = 10 sec (represented by
the shaded area). Then we have B(T) = -Bi(T) + B2{t) = 65 Kb, which gives us an estimate of
the aggregate reservation of R = B(T)/T = 6.5 Kbps, which is "reasonably" close to the actual
aggregate reservation R = 7 Kbps.

In Chapter 5 we derive an upper bound of the aggregate reservation along a link, instead of just
an estimate. By using the upper bound we can guarantee that the link is never over-provisioned.

3.1.3.3 Example 3: Route pinning

Many applications such as traffic engineering and guaranteed services require that all packets of
a flow to follow the same path. To achieve this goal, many solutions such as Tenet RCAP [8]

34

flow 2 6001

flow 3

edge node

core node

(0100

1100

flOW 1(0100 =110081101180011) jr^-TL.

flow 2 (0100 = 1100 ®1011 ® 0011)™-r—L

f low 3 (1010 = 1100 ®1001 ® 0011)r—r——,

routing table

7*7
010081100 c» 1000

path label port#

1000 1
1010 2

Q1Q0®11Q0 ^1000

o.iiozimo_öjioia

it

port#1

port #2

to 1011
j->^ioo6r

j^aioooi

J001l|}to100i

Figure 3.3: Example illustrating the route pinning algorithm. Each packet contains in its header the path's
label, defined as the xor over the identifiers of all routers on the remaining path to the egress. Upon packet
arrival, the packet's header is updated to the label of the remaining path. The routing decisions are exclusively
based on the packet's label (here the labels are assumed to be unique).

and RSVP [128] require routers to maintain per flow state. In this section we present an alternate

solution based on DPS in which core routers do not need to maintain any per flow state.
The key idea is to label a path by xor-ing the identifiers of all routers along the path. Consider

a path ido,idi,..., idn, where idj represents the identifier of the j-th router along the path. The

label I of this path at router ido is then

I = id\® id2 ®idn. (3.6)

In the example in Figure 3.3, the label of flow 1 that enters the network at the ingress router

0010, and traverses routers 1100, 1011 and 0011 is simply 1100 ® 1011 ® 0011 = 0100.

The DPS algorithm in this case is as follows: Each ingress router maintains a label I for every

flow that traverses it. Upon packet arrival, ingress routers insert the label in the packet header.1

Upon receiving a packet, a core router recomputes the label of the remaining path by xor-ing the

label carried by the packet to its identifier. For example, when the first core router, identified by

id\, receives a packet with label I, it recomputes a new label as I = I ® id\. Note that by doing

so the new label represents exactly the identifier of the remaining path, i.e., id^ <8> ids ® • • • <8> idn.

Finally, the core router updates the label in the packet header, and uses the resulting label to forward

'Note that for simplicity, we do not present here how ingress routers obtain these labels. Also, we assume that path
labels are unique, and therefore the routing decisions can be exclusively based on the path label. Finally, we do not
discuss the impact of our scheme on address aggregation. We remove all these limitations in Chapter 6.

35

the packet. Thus, a core router is not required to maintain per flow state, as it forwards each packet
based on the label in its header.

Figure 3.3 gives an example of three flows that arrive to core router 1100, and exit the network
through the same egress router 0011. However, while flows 1 and 2 are routed on identical paths,
flow 3 is routed on a different path. When a packet arrives, the label in the packet header is updated
by xor-ing it with the router identifier. Subsequently, the new label is used to route the packet.
Note that only one entry is maintained for both flows 1 and 2.

3.2 Prototype Implementation

To demonstrate that it is possible to efficiently implement and deploy our solutions in today's IPv4
networks, we have developed a prototype implementation in FreeBSD v2.2.6. The prototype fully
implements the guaranteed service as described in Chapter 5, arguably the most complex of all the
solutions we describe in this dissertation. Without going into detail, we note that our solution to pro-
vide guaranteed services tries to closely approximate an idealized model in which each guaranteed
flow traverses dedicated links of capacity 7-, where 7' is the flow reservation. Thus, in the idealized
system, a flow with a reservation of 1 Mbps behaves as if it is the only flow in a network in which
all links are of 1 Mbps.

The prototype runs in a test-bed consisting of 300 MHz and 400 MHz Pentium II PCs connected
by point-to-point 100 Mbps Ethernets. The test-bed allows the configuration of a path with up to two
core routers. Although we had complete control of our test-bed, and, due to resource constraints, the
scale of our experiments was rather small (e.g., the largest experiment involved just 100 flows), we
have devoted special attention to making our implementation as general as possible. For example,
while in the current implementation we re-use protocol space in the IP header to store the DPS
state, we make sure that the modified fields can be fully restored by the egress router. In this way,
the changes operated by the ingress and core routers on the packet header are completely transparent
to the outside world. Similarly, while the limited scale of our experiments would have allowed us
to use simple data structures to implement our algorithms, we go to great length to make sure that
our implementation is scalable. For example, instead of using a simple linked list to implement the
packet scheduler, we use a calendar queue together with a two-level priority queue to efficiently
handle a very large number of flows (see Section 8.1).

For debugging and management purposes, we implemented full support for packet level moni-
toring. This allows us to visualize simultaneously and in real-time the throughputs and the delays
experienced by flows at different points in the network. A key challenge when implementing such
a fine grained monitoring functionality is to minimize the interferences with the system operations.
We use two techniques to address this challenge. First, we off-load as much as possible of the pro-
cessing of log data on an external machine. Second, we use raw IP to send directly the log data from
router's kernel to the external machine. This way, we avoid context-switching between the kernel
and the user level.

To easily configure our system, we have implemented a command line configuration tool. This
tool allows us (1) to configure routers as ingress, egress, or core, (2) set-up, modify, and tear-down
a reservation, and (3) set-up the monitoring parameters. To minimize the interferences between
the configuration operations and data processing, we implement our tool on top of the Internet

36

Control Management Protocol (ICMP). Again, by using ICMP, we avoid context-switching when
configuring a router.

3.2.1 An Example

To illustrate how our entire package is working, in this section we present a simple example. We
consider three flows traversing a three hop path in our test-bed (see Figure 3.4). The first router
on the path (i.e., aruba.cmcl.cs.cmu.edu) is configured as an ingress router, while the next
router (i.e., cozumel. cmcl. cs . emu. edu) is configured as a core router. The link between the
two routers is configured to 10 Mbps. The traffic of each flow is generated by a different end-host
to eliminate the potential interferences. All flows are UDP, and send 1000 byte data packets. Flows
1 and 2 are guaranteed, while flow 3 is best-effort. More precisely,

• Flow 1 is a constant-bit rate (CBR) flow with an arrival rate of 1 Mbps, and a reservation of 1
Mbps.

• Flow 2 is ON-OFF, with the ON and OFF periods of 10 sec each. During the ON period the
flow sends at 3 Mbps, while during the OFF period the flow does not send anything. The flow
has a reservation of 3 Mbps.

• Flow 3 is CBR with an arrival rate of approximately 8 Mbps. Unlike flows 1 and 2, this flow
is best-effort, i.e., it does not have any reservation.

Note that when all flows are active, the total offered load is about 12 Mbps, which exceeds
the link capacity by 2 Mbps. As a result, during these time periods the ingress router is heavily
congested.

To observe the behavior of our implementation during this experiment, we use an external ma-
chine (i.e., an IBM ThinkPad 560E notebook) to monitor the three flows at the end-points of the
congested link: aruba and cozumel. Figure 3.5 shows a screen snapshot of our monitoring tool
that plots the arrival rates and the delays experienced by the three flows at aruba, and cozumel,
respectively, over a 56 sec time interval. The top-left plot shows the arrival rates of the three flows
at aruba, while the top-right plot shows their arrival rates at cozumel. All rates represent averages
over a 200 ms time period. As expected, flow 1, which has a reservation of 1 Mbps, and sends traffic
at 1 Mbps, gets all its traffic through the congested link. This is illustrated by the straight line at 1
Mbps that appears in both plots. The same is true for flow 2; whenever it sends at 3 Mbps it gets
its reservation. That is why the arrival rate of flow 2 looks identical in the two plots. In contrast,
as shown in the top-right plot, flow 3 gets its service only when the link is uncongested, i.e., when
flow 2 does not send anything. This is because flow 3 is best-effort, and therefore when both flows
1 and 2 fully use their reservations, flow 3 gets only the remaining bandwidth, which in this case is
about 6 Mbps.

The bottom-left and the bottom-right plots in Figure 3.5 show the delays experienced by each
flow at aruba, and cozumel, respectively. Each data point represents the maximum delay among
all packets of a flow over a 200 ms time period. Note the different scales on the y-axis of the two
plots. Next, we explain in more detail the results shown by these two plots.

37

Monitoring
machine

D

aruba cozumel
3# (ingress) (core)

Figure 3.4: The topology used in the experiment reported in Section 3.2. Flow 1 is CBR, has an arrival rate
of 1 Mbps, and a reservation of 1 Mbps. Flow 2 is ON-OFF; it sends 3 Mbps during ON periods and doesn't
send anything during OFF periods. The flow has a reservation of 3 Mbps. Flow 3 is best-effort and has an
arrival rate of 8 Mbps. The link between aruba and cozumel is configured to 10 Mbps.

: Monitoring Tool

Initialise | Restart | Exit j HostName:0.0.0.0 Poit:1033

Avg. Bandwidth (aruba) Mbps
10

0
84
ms

80

64

48

32

16

Flow 1

/Flow 2

Mbps
101

95.2 108 4 117.6 128 8 140 84
Delay (aruba)

. | Howl

I Flow 2

ms
151

12

jjLl^^±.AjsALMdk)^^Mj4

84

>r

95.2 106.4
-^-sec0

Avg. Bandwidth (cozumel)
Flow 1

How 2

95.2 106 4 117.6 128 8 14
Delay (cozumel)

Flow 1 -

Flow 2 -

nJi HA Mt

117.6 128.8 140 84 95.2 106 4 117.6 128.8 14

r

Plot: Set Info | Reset |

All Flows: Add Remove

<bloom-fast:gieen-last><2243:11
<alen-last. aceen-fast> < 1136:115(

Monitor Flow List:

jAddjI Modify! Remove

Flow 1 -< bloom-fast: green-fastx
Flow 2 • <glen-(ast:greenfastx1
Flow 3 - <m6-fa"t:areenfastx10!

il. J ±

Figure 3.5: A screen-shot of our monitoring tool that displays the real-time measurement results for the
experiment shown in Figure 3.4. The top two plots show the arrival rate of each flow at aruba and cozumel;
the bottom two plots show the delay experienced by each flow at the two routers.

38

Consider a flow i with reservation r^ that traverses a link of capacity C. Assume that the arrival
rate of the flow never exceeds its reservation ri, and that all packets have length /. Then, it can be
shown that the worst case delay of a packet at a router is2

I I
- + -x, (3-7) n C

Intuitively, the first term, l/vi, represents how much it takes to transmit the packet in the ideal model
in which the flow traverses dedicated links of capacity equal to its reservation T{. The second term,
l/C, represents the fact that in a real system all flows share the link of capacity C, and that the
packet transmission is not preemptive.

Since in our case I ~ 8400 bits (this includes the packet headers), C ~ 10 Mbps, r\ = 1 Mbps,
and TI = 3 Mbps, respectively, according to Eq. (3.7), the worst case delay of flow 1 is about 9.2
ms, and the worst case delay of flow 2 is about 3.6 ms. This is confirmed by the bottom two plots.
As it can be seen, especially in the bottom-right plot, the measured delays for both flows are close
to the theoretical values. The reason for which the measured values are consistently close to the
worst case bounds is due to the non-work conserving nature of CJVC; even if the output link is
idle, a packet of flow i can wait for up to Ijri time in the rate-regulator before becoming eligible for
transmission (see Section 5.3). The fact that the measured delays occasionally exceed the theoretical
bounds is because FreeBSD is not a real-time operating systems. As a result, packet processing may
take occasionally longer because unexpected interrupts, or system calls.

Finally, it is worth noting that when flow 2 is active, flow 3 experiences very large delays at the
ingress router, i.e., over 80 ms. This is because during these time periods flow 3 is restricted to 6
Mbps, while its arrival rate is about 8 Mbps. In contrast, at the subsequent router, the packet delay
of flow 3 is much smaller, i.e., under 2 ms. This is because the core router is no longer congested
after the ingress has shed the extra traffic of flow 3. The reason the delay experienced by flow 3 is
even lower than the delays experienced by the guaranteed flows is because, unlike these flows, flow
3 is not regulated, and therefore its packets are eligible for transmission as soon as they arrive.

3.3 Comparison to Intserv and Diffserv

To enhance the best effort service in the Internet, over the past decade the Internet Engineering Task
Force (IETF) has proposed two major service architectures: Integrated Services (Intserv) [82] and
Differentiated Services (Diffserv) [32]. In this section, we compare our SCORE architecture to both
Intserv and Diffserv.

3.3.1 Intserv

As discussed in Section 2.3.3, Intserv is able to provide powerful and flexible services, such as
Guaranteed [93] and Controlled-Load services [121], on a per flow basis. However this comes at the
expense of a substantial increase in the complexity as compared to today's best-effort architecture.
In particular, traditional Intserv solutions require routers to perform per flow admission control and

"This result follows from Appendix B.2, which shows that the worst case delay of our packet scheduler, called Core
Jitter Virtual Clock (CJVC) is identical to the worst case delay of Weighted Fair Queueing (WFQ) [79].

39

maintain per flow state on the control path, and to perform per flow classification, scheduling, and
buffer management on the data path. This complexity is arguably the main technical reason behind
the failure to deploy Intserv in the Internet.

3.3.1.1 SCORE Advantages

Most of the advantages of SCORE over Intserv derive from the fact that in a SCORE network, core
routers do not need to maintain any per flow state. These advantages are:

• Scalability The fact that in a SCORE network routers do not need to maintain per flow state,
significantly simplifies both the control and the data paths.

On the data path, routers are no longer required to perform per flow classification, which is
arguably the most complex operation on the data path (see Section 2.2.4). In addition, as
we will show in Chapter 5, the complexity of buffer management and packet scheduling are
greatly reduced.

On the control path, as we have briefly discussed in Section 3.1.3.2, and as we will show
in more detail in Chapter 5, by using DPS it is also possible to perform per flow admission
control in a SCORE network. Ultimately, the absence of per flow state at core routers trivially
eliminates one of the biggest challenges faced by stateful solutions in general, and Intserv in
particular: maintaining the consistency of per flow state.

In summaiy, the fact that core routers are not required to perform any per flow management,
makes the SCORE architecture highly scalable with respect to the number of flows that tra-
verse a router.

• Robustness Eliminating the need to maintain per flow state at core routers has another desir-
able consequence: the SCORE architecture is more robust in the presence of link and router
failures.3 This is due to the inherent difficulty of maintaining the consistency of dynamic,
and replicated state in a distributed environment. As pointed out by Clark [22]: "because
of the distributed nature of the replication, algorithms to ensure robust replication are them-
selves difficult to build, and few networks with distributed state information provide any sort
of protection against failure." While soft-state mechanisms such as RSVP can alleviate this
problem, there is a fundamental trade-off between message complexity and the time period
during which the system is "allowed" to be in an inconsistent state: the shorter this period is,
the greater the signalling overhead is.

3.3.1.2 Intserv Advantages

While in this dissertation we show that SCORE can implement the strongest semantic service pro-
posed by Intserv so far, i.e., the guaranteed service, it is still unclear whether SCORE can implement
all possible per flow services that can be implemented by Intserv. To offer intuition as to what might
be difficult to implement in a SCORE network, consider a service in which a flow is allocated a dif-
ferent share of the link capacity at each router along its path. In such a service a flow will receive on

3In the case of a router, here we consider only fail-stop type of failures, i.e., the fact that the router (process) has failed
is detectable by other routers (processes).

40

each link bandwidth in proportion to its share. To implement this service in SCORE, packets would
have to carry complete information about flow shares at all routers. Unfortunately, this may com-
promise the DPS algorithms' scalability as the state will increase with the path length. In Chapter 9
we discuss in more detail the potential limitations of SCORE with respect to per flow solutions.

In addition to the potential benefit of being able to implement more sophisticated per flow ser-
vices, Intserv has two other advantages over SCORE:

• Robustness While the SCORE architecture is more robust in the case of fail-stop failures,
Intserv is more robust in the case of partial reservation failures. To illustrate this point, con-
sider a router misbehavior that inserts erroneous state in the packet headers. Since core routers
process packets based on this state, such a failure can, at the limit, compromise the service in
an entire SCORE domain. As an example, if in the network shown in Figure 3.3, router 1100
misbehaves by writing arbitrary information in the packet headers, this will affect not only
the traffic that traverses router 1100, but also the traffic that traverses router 1001! This is due
to the incorrect state carried by the packets of flow 3 that may ultimately affect the processing
of packets of other flows that traverse router 1100. In contrast, with per flow solutions such a
failure is strictly confined to the traffic that traverses the faulty router.

However, in Chapter 7 we propose an approach called "verify-and-protect" that addresses this
problem. The idea is to have routers statistically verify that the incoming packets carry con-
sistent state. This enables routers to discover and isolate misbehaving end-hosts and routers.

• Incremental Deployability Since all routers in a domain have to implement the same al-
gorithms, SCORE can be deployed only on a domain by domain basis. In contrast, Intserv
solutions can be deployed on a router by router basis. However, it should be noted that for
end-to-end services, this distinction is less important, as in the latter case (at least) all con-
gested routers along the path have to deploy the service.

3.3.2 Diffserv

While at the architectural level both Diffserv and SCORE are similar in that they both try to push
complexity out of the network core, they differ in two important aspects.

First, the approach advocated by the two architectures to implement new network services is
different. The SCORE/DPS approach is top-down. We start with a service and then derive the
algorithms that have to be implemented by a SCORE network in order to achieve the desired service.
In contrast, Diffserv proposes a bottom-up approach. Diffserv standardizes a small number of per
hop behaviors (such as priority service among a very small number of classes) to be implemented by
router vendors. It is then the responsibility of the Internet Service Providers (ISPs) to configure their
routers in order to achieve the desired service. Unfortunately, configuring these routers is a daunting
task. At this point we are aware of no general framework that allows us to build sophisticated
services such as providing flow protection by simply configuring a network of Diffserv routers.

Second, while in Diffserv, packet headers carry only limited information to differentiate among
a small number of classes, in SCORE, packets carry fine grained per flow state which allows a
SCORE network to implement far more sophisticated services.

Next we discuss the advantages and disadvantages of SCORE as compared to Diffserv.

41

3.3.2.1 SCORE Advantages

The advantages of SCORE over Diffserv derive from the fact that the DPS algorithms operate at a
much finer granularity both in terms of time and traffic aggregates: the state embedded in a packet
can be highly dynamic, as it encodes the current state of the flow, rather than the static and global
properties such as dropping or scheduling priority.

• Service Granularity While SCORE, like Intserv, can provide services on a per flow basis,
Diffserv provides a coarser level of service differentiation among a small number of traffic
classes. As a result, Diffserv cannot provide some useful services such as per flow bandwidth
and delay guarantees or per flow protection.

• Robustness The extra state carried by the packets in SCORE can help to identify and isolate
malfunctions in the network. In particular, with SCORE it is possible to detect a router that
misbehaves by inserting erroneous state in the packet headers. To achieve this, in Chapter 7 we
propose an approach, called "verify-and-protect", in which routers statistically verify whether
the incoming packets are correctly marked. For example, in the case of CSFQ, a router can
monitor a flow, estimate its rate, and then check this rate against the rate earned by the packet
headers. If the two rates fall outside a "tolerable" range, this is an indication that an up-stream
router misbehaves. Thus, the problem is confined to the routers on the path from the ingress
where the flow enters the network up to the current router.

In contrast, with Diffserv it is not possible to infer such an information. If, for example, a
core router starts to drop a high percentage of premium packets this can be attributed to any
router along any path from the ingress routers to the current router.

3.3.2.2 Diffserv Advantages

• Data Path Processing Overhead In Diffserv core routers process packets based on a small
number of traffic classes. Upon packet arrival, a router classifies the packet, and then performs
per class buffer management and scheduling. Since usually the number of classes is no larger
than 10, packet processing can be very efficiently implemented. In contrast, in SCORE,
packet processing can be more complex. For example, in the case of providing guaranteed
services, each packet has an associated deadline, and the packets are served in the increasing
order of their deadlines. However, as we will show in Chapter 5, the number of packets
that have to be considered at one time is still much smaller than the number of flows. In
particular, when the number of flows is larger than one million, the number of packets is at
least two orders of magnitude smaller than the number of flows. We believe that this reduction
is enough to allow packet processing at the line speed. Moreover, our other two solutions to
provide per flow services, i.e., flow protection, and service differentiation of traffic aggregates
over a large number of destinations, are no more complex than today's Diffserv solutions.

3.4 Summary

In this section we have described the main components of our solution to provide per flow services in
a SCORE network architecture. To illustrate the key technique of our solution, i.e., Dynamic Packet

42

State (DPS), we have presented the implementation of three per flow mechanisms in a SCORE
network that (1) approximate Fair Queueing scheduling discipline, (2) provide per flow admission
control, and (3) perform route pinning. In addition, we have compared our solution to two network
architectures proposed by IETF to enhance the best-effort service (Intserv and Diffserv), and con-
clude that our solution achieves the best of the two worlds. In particular, it can provide services as
powerful and as flexible as the ones implemented by Intserv, while having similar complexity and
scalability as Diffserv.

43

44

Chapter 4

Providing Flow Protection in SCORE

In this chapter we present the first illustration of our general solution described in Chapter 3. The
goal is to provide flow protection, which is one of the most desirable enhancements of today's
best-effort service. If deployed, flow protection would allow diverse end-to-end congestion control
schemes to seamlessly coexist in the Internet, and protect well behaved traffic against malicious or
ill-behaved traffic. The solution of choice to achieve flow protection is to have routers implement fair
bandwidth allocation. Unfortunately, previous known implementations of fair bandwidth allocation
require stateful networks, that is, require routers to maintain per flow state and perform per flow
management. In this chapter, we present a solution to address this problem. In particular we use the
Dynamic Packet State (DPS) technique to provide fair bandwidth allocations in a SCORE network.
To the best of our knowledge this is the first solution to provide fair bandwidth allocation in a
stateless core network.

The rest of this chapter is organized as follows. The next section presents the motivations
behind the flow isolation and describes the fair bandwidth allocation approach to implement this
service. Section 4.2 outlines our solution developed in the SCORE/DPS framework, called Core-
Stateless Fair Queueing (CSFQ). Section 4.3 focusses on the details of CSFQ and its performance
both absolute and relative, while Section 4.4 presents simulation results and compare CSFQ to
several other schemes. Finally, Section 4.5 presents related work, and Section 4.6 concludes the
chapter by summarizing our results.

4.1 Background

Because of their reliance on statistical multiplexing, data networks such as the Internet, must provide
some mechanism to control network congestion. Network congestion occurs when the rate of the
traffic arriving at a link exceeds the link capacity. The current Internet, which primarily uses FIFO
queueing and drop-tail mechanisms in its routers, relies on end-to-end congestion control in which
end-hosts reduce their transmission rates when they detect that the network is congested. The most
widely utilized form of end-to-end congestion control is Transport Control Protocol (TCP) [57],
which has been tremendously successful in preventing congestion collapse.

However, the effectiveness of this approach depends on one fundamental assumption: end-hosts
cooperate by implementing homogeneous congestion control algorithms. In other words these al-
gorithms produce similar bandwidth allocations if used in similar circumstances. In today's Internet

45

this is equivalent to flows being "TCP-friendly", which means that "their arrival rate does not exceed
that of any TCP connection in the same circumstances" [36].

While this was a reasonable assumption in the past when the Internet was primarily used by
the research community, and the vast majority of traffic was TCP based, it is no longer true today.
In particular, this assumption can be violated in three general ways. First, some applications are
unresponsive in that they don't implement any congestion control algorithms at all. Most of the
early multimedia and multicast applications, like vat [59], nv [40], vie [70], wb [58] and RealAu-
dio fall into this category. Another example would be malicious users mounting denial of service
attacks by blasting unresponsive traffic into the network. Second, some applications use congestion
control algorithms that, while responsive, are not TCP-friendly. An example of such an algorithm is
Receiver-driven Layered Multicast (RLM) [69].' Third, some users will cheat and use a non-TCP
congestion control algorithm to get more bandwidth. An example of this would be using a modified
form of TCP with, for instance, a larger initial window and window opening constants.

Starting with Nagle [74], many researchers observed that these problems can be overcome when
routers have mechanisms that allocate bandwidth in a fair manner. Fair bandwidth allocation pro-
tects well-behaved flows from the ill-behaved (unfriendly) flows, and allows a diverse set of end-
to-end congestion control policies to co-exist in the network [31]. To differentiate it from other
approaches (see Section 4.5 for an alternative approach) that deal with the unfriendly flow problem
we call this approach the allocation approach. It is important to note that the allocation approach
does not demand that all flows adopt some universally standard end-to-end congestion control al-
gorithm; flows can choose to respond to the congestion in whatever manner best suits them without
harming other flows. Assuming that flows prefer not to have significant levels of packet drop, these
allocation approaches give an incentive for flows to use end-to-end congestion control, because
being unresponsive hurts their own performance.

While the allocation approach has many desirable properties for congestion control, it has yet
to be deployed in the Internet. One of the main reasons behind this state of affairs is the implemen-
tation complexity. Until now, fair allocations were typically achieved by using per flow queueing
mechanisms - such as Fair Queueing [31, 79] and its many variants [10, 45, 94] - or per flow
dropping mechanisms such as Flow Random Early Drop (FRED) [67]. These mechanisms are sig-
nificantly more complex to implement than the traditional FIFO queueing with drop-tail, which is
the most widely implemented and deployed mechanism in routers today. In particular, fair allo-
cation mechanisms inherently require the router to maintain state and perform operations on a per
flow basis. For each packet that arrives at the router, the routers needs to classify the packet into
a flow, update per flow state variables, and perform certain operations based on the per flow state.
The operations can be as simple as deciding whether to drop or queue the packet (e.g., FRED), or
as complex as manipulation of priority queues (e.g., Fair Queueing). While a number of techniques
have been proposed to reduce the complexity of the per packet operations [9, 94, 99], and com-
mercial implementations are available in some intermediate class routers, it is still unclear whether
these algorithms can be cost-effectively implemented in high-speed backbone routers because all
these algorithms still require packet classification and per flow state management.

'Although our data in Section 4.4 showed RLM receiving less than its fair share, when we change the simulation
scenario so that the TCP flow starts after all the RLM flows, it then receives less than half of its fair share. This hysteresis
in the RLM versus TCP behavior was first pointed out to us by Steve McCanne [69].

46

CSFQ —
_TY' CSFQCSFQ

CSFQ

a) Reference Stateful Network b) SCORE Network

Figure 4.1: (a) A reference stateful network that provides fair bandwidth allocation; each node implements
the Fair Queueing algorithm, (b) A SCORE network that approximates the service provided by the reference
network; each node implements our algorithm, called Core-Stateless Fair Queueing (CSFQ).

In this chapter, we address the complexity problem by describing a solution based on Dynamic
Packet State to provide fair bandwidth allocation within a SCORE domain. We call this solution
Core-Stateless Fair Queueing (CSFQ) since the core routers keep no per flow state, but instead use
the state that is canned in the packet labels.

4.2 Solution Outline

Existing solutions to provide fair bandwidth allocation require routers to maintain per flow state [10,
31, 45, 79, 94]. In this chapter, we present the first solution to achieve fair bandwidth allocation in
a network in which core routers maintain no per flow state. Our solution is based on the generic
approach described in Section 3.1.2. This approach consists of two steps. In the first step we define
a reference network that provides fair bandwidth allocation by having each node implement the Fair
Queueing (see Figure 4.1(a)) algorithm. In the second step, we approximate the service provided
by the reference network within a SCORE network (see Figure 4.1(b)). To achieve this we use the
Dynamic Packet State (DPS) technique to implement a novel algorithm, called Core-Stateless Fair
Queueing (CSFQ), which approximates the behavior of Fair Queueing.

With CSFQ, edge routers use per flow state to estimate the rate of each incoming flow. Upon
a packet arrival, the edge router classifies the packet to the appropriate flow, updates the flow's
rate estimate, and then labels the packet with this estimate. In turn, core routers2 implement FIFO
queueing with probabilistic dropping on input. The probability of dropping a packet as it arrives at
the queue is a function of the rate estimate carried in the label and of the fair share rate at that router,
which is estimated based on measurements of the aggregate traffic. When the packet is forwarded
the router may update the estimate carried by the packet to reflect the eventual change in the flow's
rate due to packet dropping. In this way, CSFQ avoids both the need to maintain per flow state and
the need to use complicated packet scheduling and buffering algorithms at core routers.

2Note that Example 1 in Section 3.1.3 outlines the CSFQ algorithm as implemented by core routers.

47

4.3 Core-Stateless Fair Queueing (CSFQ)

In this section we present our algorithm, called Core-Stateless Fair Queueing (CSFQ), which ap-
proximates the behavior of Fair Queueing in a SCORE network. To offer intuition about how CSFQ
works, we first present the idealized bit-by-bit or fluid version of the probabilistic dropping scheme,
and then extend the algorithm to a practical packet-by-packet version.

4.3.1 Fluid Model Algorithm

We first consider a bufferless fluid model of a router with output link speed C, where the flows are
modelled as a continuous stream of bits. We assume each flow's arrival rate r,(t) is known precisely.
Max-min fair bandwidth allocations are characterized by the fact that all flows that are bottlenecked
(i.e., have bits dropped) by this router have the same output rate. We call this rate the fair share rate
of the server; let a(t) be the fair share rate at time /. In general, if max-min bandwidth allocations
are achieved, each flow i receives service at a rate given by miii(7,,-(/). a(t)). Let A(t) denote the
total arrival rate: A(t) = 5Z?"=i ri{t)- If ^(*) > C then the fair share a{t) is the unique solution to

C = X>iu(7v(*),«(/)), (4.1)

If A(t) < C then no bits are dropped and we will, by convention, set a(t) = max, r,(t).
If Ti{t) < a(t), i.e., flow i sends no more than the server's fair share rate, all of its traffic will

be forwarded. If r7(/) > a(t), then a fraction r7/) of its bits will be dropped, so it will have
an output rate of exactly a(t). This suggests a very simple probabilistic forwarding algorithm that
achieves fair allocation of bandwidth: each incoming bit of flow i is dropped with the probability

-«(<U-=f|) <4.2)

When these dropping probabilities are used, the arrival rate of flow i at the next hop is given by
mm[n{t),a{t)].

4.3.2 Packet Algorithm

The above algorithm is defined for a bufferless fluid system in which the arrival rates are known
exactly. Our task now is to extend this approach to the situation in real routers where transmission
is packetized, there is substantial buffering, and the arrival rates are not known.

We still employ a drop-on-input scheme, except that now we drop packets rather than bits.
Because the rate estimation (described below) incorporates the packet size, the dropping probability
is independent of the packet size and depends only, as above, on the rate ri(t) and fair share rate
a(t).

We are left with two remaining challenges: estimating the rates r,(i) and the fair share a(t). We
address these two issues in turn in the next two subsections, and then discuss the rewriting of the
labels. Pseudocode reflecting this algorithm is described in Figures 4.3 and 4.4.

48

Flowl

Flown

Figure 4.2: The architecture of the output port of an edge router, and a core router, respectively.

4.3.2.1 Computation of Flow Arrival Rate

Recall that in our architecture, the rates ri(t) are estimated at the edge routers and then these rates
are inserted into the packet labels. At each edge router, we use exponential averaging to estimate the
rate of a flow. Let t\ and l\ be the arrival time and length of the kth packet of flow i. The estimated
rate of flow i, j-j, is updated every time a new packet is received:

= {l-e-T?/K)Ii+e-T*/KrM (4.3)

where Tf = t\ — t* l and K is a constant. We discuss the rationale for using the form e T% lK for
the exponential weight in Section 4.3.7.

4.3.2.2 Link Fair Rate Estimation

In this section, we present an estimation algorithm for a(t). To give intuition, consider again the
fluid model in Section 4.3.1 where the arrival rates are known exactly, and assume the system per-
forms the probabilistic dropping algorithm according to Eq. (4.2). Then, the rate with which the
algorithm accepts packets is a function of the current estimate of the fair share rate, which we de-
note by a(t). Letting F(a(t)) denote this acceptance rate, we have

F(a(t)) = £min(ri(t),a(t)). (4.4)
i=i

Note that F(-) is a continuous, nondecreasing, concave, and piecewise-linear function of 5. If the
link is congested (A(i) > C) we choose a(t) to be the unique solution to F(x\= C. If the link
is not congested (A(t) < C) we take a(t) to be the largest rate among the flows that traverse the
link, i.e., a(t) = maxi<j<n(rj(£)). From Eq. (4.4) note that if we knew the arrival rates ri(t) we
could then compute a(t) directly. To avoid having to keep such per flow state, we seek instead to
implicitly compute a(t) by using only aggregate measurements of F and A.

We use the following heuristic algorithm with three aggregate state variables: a, the estimate
for the fair share rate; A, the estimated aggregate arrival rate; F, the estimated rate of the accepted

49

on packet;; arrival
if (edge router)

i =classify(p);
p.label = estimate_rate(r,.;;); /* use Eq. (4.3) */

prob =max(0,1 — a/p.label);
if (prob >uniLrand(0, 1))

a =estimate_n (p, 1);
drop(p);

else
a =estimate_n (p. 0);
enqueue(p);

if (prob >0)
p.label — a; /* relabelp */

Figure 4.3: The pseudocode of CSFQ.

traffic. The last two variables are updated upon the arrival of each packet. For A we use exponential

averaging with a parameter (>-' /h" where T is the inter-arrival time between the current and the
previous packet:

AnF«. = (1 - e-T/K") t + c-T'K» AM (4.5)

where A0u\ is the value of A before the updating. We use an analogous formula to update F.

The updating rule for a depends on whether the link is congested or not. To filter out the esti-

mation inaccuracies due to exponential smoothing we use a window of size Kr. A link is assumed

to be congested, if A > C at all times during an interval of length Kc. Conversely, a link is assumed

to be uncongested, if A < C at all times during an interval of length Kc. The value a is updated

only at the end of an interval in which the link is either congested or uncongested according to

these definitions. If the link is congested then a is updated based on the equation F(a) = C. We

approximate F(-) by a linear function that intersects the origin and has slope F/aoUi. This yields

C
OWir = «oW"~ (4-6)

r

If the link is not congested, o„ru, is set to the largest rate of any active flow (i.e., the largest label

seen) during the last Kc time units. The value of ancu. is then used to compute dropping probabil-

ities, according to Eq. (4.2). For completeness, we give the pseudocode of the CSFQ algorithm in

Figure 4.4.

We now describe two minor amendments to this algorithm related to how the buffers are man-

aged. The goal of estimating the fair share a is to match the accepted rate to the link bandwidth. Due

to estimation inaccuracies, load fluctuations between a's updates, and the probabilistic nature of our

algorithm, the accepted rate may occasionally exceed the link capacity. While ideally the router's

buffers can accommodate the extra packets, occasionally the router may be forced to drop the in-

coming packet due to lack of buffer space. Since drop-tail behavior will defeat the purpose of our

algorithm, and may exhibit undesirable properties in the case of adaptive flows such as TCP [37], it

50

estimate_Q (p, dropped)
estimate_rate(Ä, p); /* est. arrival rate (use Eq. (4.5)) */
if (dropped == FALSE)

estimate-rate(F, p); /* est. accepted traffic rate */

ft(A>C)
if (congested == FALSE)

congested = TRUE;
startJime = crt-time;

else
if (crtdime > start-time + Kc)

a = a x C/F;
start-time = crt-time;

else /* A < C */
ft (congested == TRUE)

congested = FALSE;
start-time = crt-time;
tmp-Ot — 0; /* use to compute new a */

else
ft (crt-time < start-time + Kc)

tmp-Ot =max(tmp-ct,p.label);
else

a = tmp-a;
start-time = crt-time;
trap-a = 0;

return a;

Figure 4.4: The pseudocode of CSFQ (fair rate estimation).

is important to limit its effect. To do so, we use a simple heuristic: every time the buffer overflows,

a is decreased by a small fixed percentage (taken to be 1% in our simulations). Moreover, to avoid

overcorrection, we make sure that during consecutive updates a. does not decrease by more than

25%.
In addition, since there is little reason to consider a link congested if the buffer is almost empty,

we apply the following rule. If the link becomes uncongested by the test in Figure 4.4, then we

assume that it remains uncongested as long as the buffer occupancy is less than some predefined

threshold. In the current implementation we use a threshold that is half of the total buffer capacity.

4.3.2.3 Label Rewriting

Our rate estimation algorithm in Section 4.3.2.1 allows us to label packets with their flow's rate as

they enter the SCORE domain. Our packet dropping algorithm described in Section 4.3.2.2 allows

us to limit flows to their fair share of the bandwidth. After a flow experiences significant losses at a

congested link inside the domain, however, the packet labels are no longer an accurate estimate of

its rate. We cannot rerun our estimation algorithm, because it involves per flow state. Fortunately,

as noted in Section 4.3.1, the outgoing rate is merely the incoming rate or the fair rate, a, whichever

51

is smaller. Therefore, we rewrite the the packet label L as

Lnew = min(LoW,o), (4.7)

By doing so, the outgoing flow rates will be properly represented by the packet labels.

4.3.3 Weighted CSFQ

The CSFQ algorithm can be extended to support flows with different weights. Let Wj denote the
weight of flow i. Returning to our fluid model, the meaning of these weights is that we say a fair
allocation is one in which all bottlenecked flows have the same value for If-. Then, if A(t) > C, the

normalized fair rate rv(tf) is the unique value such that ^Z"_1 Wj min (a, ^)=C. The expression

for the dropping probabilities in the weighted case is max (0,1 — «T
1
)- The only other major

change is that the label is now r,/w,, instead simply rt. Finally, without going into detail we note
that the weighted packet-by-packet version is virtually identical to the corresponding version of the
plain CSFQ algorithm.

It is also important to note that with weighted CSFQ we can only approximate a reference net-
work in which each flow has the same weight at all routers along its path. That is, our algorithm can-
not accommodate situations where the relative weights of flows differ from router to router within
a domain. However, even with this limitation, weighted CSFQ may prove a valuable mechanism in
implementing differential services, such as the one proposed in [116].

4.3.4 Performance Bounds

We now present the main theoretical result for CSFQ. For generality, this result is given for weighted
CSFQ. The proof is given in Appendix A.

Our algorithm is built around several estimation procedures, and thus is inherently inexact. One
natural concern is whether a flow can purposely "exploit" these inaccuracies to get more than its
fair share of bandwidth. We cannot answer this question with full generality, but we can analyze a
simplified situation where the normalized fair share rate, a, is held fixed and there is no buffering,
so the drop probabilities are precisely given by Eq. (4.2). In addition, we assume that when a packet
arrives, a fraction of that packet equal to the flow's forwarding probability is transmitted. Note that
during any time interval [tuh) a flow with weight w is entitled to receive at most w(y(t2 — t\)
service time; we call any amount above this the excess senice. This excess service can be bound,
independent of both the arrival process and the length of the time interval during which the flow is
active. The bound does depend crucially on the maximal rate, R, at which a flow packets can arrive
at a router (limited, for example, by the speed of the flow's access link); the smaller this rate R, the
tighter the bound.

Theorem 1 Consider a link with a constant normalized fair rate a, and a flow with weight w. Then,
the excess service received by a flow with weight w that sends at a rate no larger than R, is bounded
above by

raK (l + In—] + Zmax, (4.8)

52

where ra = aw, and lmax represents the maximum length of a packet.

By bounding the excess service, we have shown that in this idealized setting, the asymptotic
throughput cannot exceed the fair share rate. Thus, flows can only exploit the system over short
time scales; they are limited to their fair share over long time scales.

4.3.5 Implementation Complexity

At core routers, both the time and space complexity of our algorithm are constant with respect to the
number of competing flows, and thus we think CSFQ could be implemented in very high speed core
routers. At each edge router CSFQ needs to maintain per flow state. Upon the arrival of each packet,
the edge router needs to (1) classify the packet to a flow, (2) update the fair share rate estimation for
the corresponding outgoing link, (3) update the flow rate estimation, and (4) label the packet. All
these operations with the exception of packet classification can be efficiently implemented today.

Efficient and general-purpose packet classification algorithms are still under active research. We
expect to leverage these results. We also note that packet classification at ingress nodes is needed for
a number of other purposes, such as in the context of Multiprotocol Label Switching (MPLS) [17]
or for accounting purposes. Therefore, the classification required for CSFQ may not be an extra
cost. In addition, edge routers typically not on the high-speed backbone links pose no problem as
classification at moderate speeds is quite practical.

4.3.6 Architectural Considerations

We have used the term flow without defining what we mean. This was intentional, as the CSFQ
approach can be applied to varying degrees of flow granularity; that is, what constitutes a flow is
arbitrary as long as all packets in the flow follow the same path within the core. For convenience,
flow as used here is implicitly defined as a source-destination pair, but one could easily assign fair
rates to many other granularities such as source-destination-ports. Moreover, the unit of "flow" can
vary from domain to domain as long as the rates are re-estimated when entering a new domain.

Similarly, we have not been precise about the size of the SCORE domains. In one extreme, we
could take each router as a domain and estimate rates at every router; this would allow us to avoid
the use of complicated per flow scheduling and dropping algorithms, but would require per flow
classification. Another possibility is that ISPs could extend their SCORE domain to the very edge
of their network, having their edge routers at the points where customer's packets enter the ISP's
network. Building on the previous scenario, multiple ISPs could combine their domains so that
classification and estimation did not have to be performed at ISP-ISP boundaries. The key obstacle
here is one of trust between ISPs.

4.3.7 Miscellaneous Details

Having presented the basic CSFQ algorithm, we now return to discuss a few aspects in more detail.
We have used exponential averaging to estimate the arrival rate in Eq. (4.3). However, instead of

using a constant exponential weight we used e~TlK, where T is the inter-packet arrival time and K
is a constant. Our motivation was that e~~TlK more closely reflects a fluid averaging process which

53

is independent of the packetizing structure. More specifically, it can be shown that if a constant
weight is used, the estimated rate will be sensitive to the packet length distribution and there are
pathological cases where the estimated rate differs from the real arrival rate by a factor; this would
allow flows to exploit the estimation process and obtain more than their fair share. In contrast, by
using a parameter of e~7///v, the estimated rate will asymptotically converge to the real rate, and
this allows us to bound the excess service that can be achieved (as in Theorem 1). We used a similar
averaging process in Eq. (4.5) to estimate the total arrival rate A.

The choice of K in the above expression <.~] lh presents us with several tradeoffs. First, while
a smaller K increases system responsiveness to rapid rate fluctuations, a larger K better filters noise
and avoids potential system instability. Second, K should be large enough such that the estimated
rate, calculated at the edge of the network, remains reasonably accurate after a packet traverses
multiple links. This is because the delay-jitter changes the packets' inter-arrival pattern, which may
result in an increased discrepancy between the estimated rate (received in the packets' labels) and
the real rate. To counteract this effect, as a rule of thumb, K should be one order of magnitude
larger that the delay-jitter experienced by a flow over a time interval of the same size, K. Third, K
should be no larger than the average duration of a flow. Based on this constraints, an appropriate
value for K would be between 100 and 500 ms.

4.4 Simulation Results

In this section we evaluate our algorithm by simulation. To provide some context, we compare
CSFQ's performance to three additional algorithms. Two of these, FIFO and RED, represent base-
line cases where routers do not attempt to achieve fair bandwidth allocations. The other two algo-
rithms, FRED and DRR, represent different approaches to achieving fairness.

• FIFO (First In First Out) - Packets are served in a first-in first-out order, and the buffers are
managed using a simple drop-tail strategy; i.e., incoming packets are dropped when the buffer
is full.

• RED (Random Early Detection) - Packets are served in a first-in first-out order, but the buffer
management is significantly more sophisticated than drop-tail. RED [37] starts to probabilis-
tically drop packets long before the buffer is full, providing early congestion indication to
flows which can then gracefully back-off before the buffer overflows. RED maintains two
buffer thresholds. When the exponentially averaged buffer occupancy is smaller than the first
threshold, no packet is dropped, and when the exponentially averaged buffer occupancy is
larger than the second threshold all packets are dropped. When the exponentially averaged
buffer occupancy is between the two thresholds, the packet dropping probability increases
linearly with buffer occupancy.

• FRED (Fair Random Early Drop) - This algorithm extends RED to provide some degree of
fair bandwidth allocation [67]. To achieve fairness, FRED maintains state for all flows that
have at least one packet in the buffer. Unlike RED where the dropping decision is based only
on the buffer state, in FRED dropping decisions are based on this flow state. Specifically,
FRED preferentially drops a packet of a flow that has either (1) had many packets dropped

54

in the past, or (2) a queue larger than the average queue size. FRED has two variants (which
we will call FRED-1 and FRED-2). The main difference between the two is that FRED-2
guarantees to each flow a minimum number of buffers. As a general rule, FRED-2 performs
better than FRED-1 only when the number of flows is large. In the following data, when we
don't distinguish between the two, we are quoting the results from the version of FRED which
performed the best.

• DRR (Deficit Round Robin) - This algorithm represents an efficient implementation of the
well-known weighted fair queueing (WFQ) discipline. The buffer management scheme as-
sumes that when the buffer is full the packet from the longest queue is dropped. DRR is the
only one of the four to use a sophisticated per-flow queueing algorithm, and thus achieves the
highest degree of fairness.

These four algorithms represent four different levels of complexity. DRR and FRED have to
classify incoming flows, whereas FIFO and RED do not. In addition, DRR has to implement its
packet scheduling algorithm (whereas the rest all use first-in-first-out scheduling). CSFQ edge
routers have complexity comparable to FRED, and CSFQ core routers have complexity comparable
to RED.

We have examined the behavior of CSFQ under a variety of conditions. We use an assortment
of traffic sources (mainly CBR and TCP, but also some on-off sources) and topologies. For space
reasons, we only report on a small sampling of the simulations we have run; a fuller set of tests, and
the scripts used to run them, is available at http: //www. cs . cmu.edu/~istoica/csfq. All
simulations were performed in ns-2 [78], which provides accurate packet-level implementation for
various network protocols, such as TCP and RLM (Receiver-driven Layered Multicast) [69], and
various buffer management and scheduling algorithms, such as RED and DRR.

Unless otherwise specified, we use the following parameters for the simulations in this section.
Each output link has a latency of 1 ms, a buffer of 64 KB, and a buffer threshold for CSFQ of 16
KB. In the RED and FRED cases, the first threshold is set to 16 KB, while the second one is set to
32 KB. The averaging constant used in estimating the flow rate is K = 100 ms, while the averaging
constant used in estimation the fair rate a is Ka = 200 ms. Finally, in all topologies we use the first
router (gateway) on the path of a flow is always assumed to be the edge router; all other routers are
assumed without exception to be core routers.

We simulated the other four algorithms to give us benchmarks against which to assess these
results. We use DRR as our model of fairness and use the baseline cases, FIFO and RED, as repre-
senting the (unfair) status quo. The goal of these experiments is determine where CSFQ sits between
these two extremes. FRED is a more ambiguous benchmark, being somewhat more complex than
CSFQ, but not as complex as DRR.

In general, we find that CSFQ achieves a reasonable degree of fairness, significantly closer
to DRR than to FIFO or RED. CSFQ's performance is typically comparable to FRED's, although
there are a few situations where CSFQ significantly outperforms FRED. There are a large number of
experiments and each experiment involves rather complex dynamics. Due to space limitations, in the
sections that follow we will merely highlight a few important points and omit detailed explanations
of the dynamics.

55

Sources
FlowO

Flow 1

Flow N-1

' 1 1
DRR ..

CSFQ -.-
FRED-1 ■.,-

0.8 FRED-2 . -
RED -
FIFO .

0.6

*■-•

.u n t] n '

0.4
r »'?

n >•*'■*
„- '

r*~ *-*-*7* -*-=■*-*. ---#- -*--«.■« y jj-f*-4 ^ Jf-i"* ». * s..»«.f.-» »jfj

* u r f JK--*V

0.2
„ n ■r>

-* '

>■

n i . , , , ,
10 15 20

Flow Number
25 30

(a) (b)

Figure 4.5: (a) A 10 Mbps link shared by N flows, (b) The average throughput over 10 sec when N = 32, and
all flows are CBRs. The arrival rate for flow i is (i + 1) times larger than its fair share. The flows are indexed
from 0.

4.4.1 A Single Congested Link

We first consider a single congested link shared by Ar flows (see Figure 4.5(a)). We performed three
related experiments.

In the first experiment, we have 32 CBR flows, indexed from 0, where flow i sends i + 1 times
more than its fair share of 0.3125 Mbps. Thus flow 0 sends 0.3125 Mbps, flow 1 sends 0.625 Mbps,
and so on. Figure 4.5(b) shows the average throughput of each flow over a 10 sec interval; FIFO,
RED, and FRED-1 fail to ensure fairness, with each flow getting a share proportional to its incoming
rate, while DRR is extremely effective in achieving a fair bandwidth distribution. CSFQ and FRED-
2 achieve a less precise degree of fairness; for CSFQ the throughputs of all flows are between -11%
and +12% of the ideal value.

In the second experiment we consider the impact of an ill-behaved CBR flow on a set of TCP
flows. More precisely, the traffic of flow 0 comes from a CBR source that sends at 10 Mbps, while all
the other flows (from 1 to 31) are TCPs. Figure 4.6(a) shows the throughput of each flow averaged
over a 10 sec interval. The only two algorithms that can most effectively contain the CBR flow
are DRR and CSFQ. Under FRED the CBR flow gets almost 1.8 Mbps - close to six times more
than its fair share - while the CBR only gets 0.396 Mbps and 0.355 Mbps under DRR and CSFQ,
respectively. As expected, FIFO and RED perform poorly, with the CBR flow getting over 8 Mbps
in both cases.

In the final experiment, we measure how well the algorithms can protect a single TCP flow
against multiple ill-behaved flows. We perform 31 simulations, each for a different value of N,
N = 1... 31. In each simulation we take one TCP flow and iV CBR flows; each CBR sends at
twice its fair share rate of ^yMbps. Figure 4.6(b) plots the ratio between the average throughput
of the TCP flow over 10 sec and the total bandwidth it should receive as a function of the total
number of flows in the system N + I. There are three points of interest. First, DRR performs
very well when there are less than 22 flows, but its performances decreases afterwards because
then the TCP flow's buffer share is less than three buffers which is known to significantly affect its

56

■D

1.8

1.6

1.4

1.2

1

0.8

0.6

DRR^
CSFQ *-
FRED

RED »-
g FIFO --'

CO
«
0)
■o

.c
T3
g
m

1.4 DRR —
CSFQ *-- '
FRED e

1.2 RED -K
FIFO —

1

A ■
0.8! . v* «,B_ w

0.6
S

0.4

0.2

a ',

0"0-0-l3-Cl-«'"D"lä
.„

n '-V,.*-.«...»-.*-.*^«-.*-.*-.*-.^»—ft--*- -».-»_*.-*„, .*„..-* -« «J^..»...^'.*.--■*-*—

15 20
Flow Number

10 15 20 25
Total Number of Flows

30

(a) (b)

Figure 4.6: (a) The throughputs of one CBR flow (0 indexed) sending at 10 Mbps, and of 31 TCP flows
sharing a 10 Mbps link, (b) The normalized bandwidth of a TCP flow that competes with TV CBR flows
sending at twice their allocated rates, as a function of N.

throughput. Second, CSFQ performs better than DRR when the number of flows is large. This is
because CSFQ is able to cope better with the TCP burstiness by allowing the TCP flow to have more
than two packets buffered for short time intervals. Finally, across the entire range, CSFQ provides
similar or better performance as compared to FRED.

4.4.2 Multiple Congested Links

We now analyze how the throughput of a well-behaved flow is affected when the flow traverses more
than one congested link. We performed two experiments based on the topology shown in Figure 4.7.
All CBRs, except CBR-0, send at 2 Mbps. Since each link in the system has 10 Mbps capacity, this
will result in all links between routers being congested.

In the first experiment, we have a CBR flow (denoted CBR-0) sending at its fair share rate
of 0.909 Mbps. Figure 4.8(a) shows the fraction of CBR-0's traffic that is forwarded, versus the
number of congested links. CSFQ and FRED perform reasonably well, although not quite as well
as DRR.

In the second experiment we replace CBR-0 with a TCP flow. Similarly, Figure 4.8(b) plots the
normalized TCP throughput against the number of congested links. Again, DRR and CSFQ prove
to be effective. In comparison, FRED performs significantly worse though still much better than
RED and FIFO. The reason is that while DRR and CSFQ tries to allocate bandwidth fairly among
competing flows during congestion, FRED tries to allocate the buffer fairly. Flows with different
end-to-end congestion control algorithms will achieve different throughputs even if routers try to
fairly allocate the buffer. In the case of Figure 4.8(a), all sources are CBR, i.e., none are adopting
any end-to-end congestion control algorithms, FRED provides performance similar to CSFQ and
DRR. In the case of Figure 4.8(b), a TCP flow is competing with multiple CBR flows. Since the TCP
flow slows down during congestion while CBQ does not, it achieves significantly less throughput
than a competing CBR flow.

57

CBR-1 -CBR-10

Sinks Q

CBR/TCP-0 a
Source

Routeii

CBR-K1 -CBR-K10

o
Router2 L..J Router K-

CBR/TCP-0

Router K+1 Q

Sink

Sources (

CBR-1 CBR-10 CBR-11 CBR-20 CBR-K1 CBR-K10

Figure 4.7: Topology for analyzing the effects of multiple congested links on the throughput of a flow. Each
link has ten cross flows (all CBRs). All links have 10 Mbps capacities. The sending rates of all CBRs,
excepting CBR-0, are 2 Mbps, which leads to all links between routers being congested.

1.4
1

DRR^
CSFQ ~.
FRED u

% 1-2
g

RED ■ -
FIFO-

m
« 1 *

■o ..
■^ 0.8 _
-o
i 0.6 -
■o
0)

15 0.4 .
o
o

< 0.2 ""--*- — ..
"■■----*

- - - A- .

-

0
2 3 4 5

1.4

§ 1-2
g

CD

g
CD

0.8

0.6 ■

re 0.4

0.2

Of

DRR-
CSFQ -.
FRED u

RED - ■
FIFO--

Number of Congested Links

(a)

2 3 4
Number of Congested Links

(b)

Figure 4.8: (a) The normalized throughput of CBR-0 as a function of the number of congested links, (b)
The same plot when CBR-0 is replaced by a TCP flow.

4.4.3 Coexistence of Different Adaptation Schemes

In this experiment we investigate the extent to which CSFQ can deal with flows that employ different
adaptation schemes. Receiver-driven Layered Multicast (RLM) [69] is an adaptive scheme in which
the source sends the information encoded into a number of layers (each to its own multicast group)
and the receiver joins or leaves the groups associated with the layers based on how many packet
drops it is experiencing. We consider a 4 Mbps link traversed by one TCP and three RLM flows.
Each source uses a seven layer encoding, where layer i sends 2'+1 Kbps; each layer is modeled by
a CBR traffic source. The fair share of each flow is 1Mbps. In the RLM case this will correspond to
each receiver subscribing to the first five layers. 3

The average receiving rates averaged over 1 sec intervals for each algorithm are plotted in Fig-
ure 4.9. We have conducted two separate simulations of CSFQ.4 In the first one, we have used the
same averaging constant as in the rest of this chapter: K = 100 ms, and KQ = 200 ms. Here, one

3More precisely, we have ^2i=l 2I_H Kbps = 0.992 Mbps.
4See also [69] for additional simulations of RLM and TCP.

58

50 100 150 200 250 300 350 400 450
Time (sec)

(a) DRR

4

3.5

3

2.5

2

1.5

1

0.5

0 0

TCP-
RLM1 -
RLM2
RLM3

50 100 150 200 250 300 350 400 450
Time (sec)

(c) CSFQ (K = 100 ms, Ka = 200 ms.)

4r

50 100 150 200 250 300 350 400 450
Time (sec)

(e) RED

50 100 150 200 250 300 350 400 450
Time (sec)

(b) FRED

50 100 150 200 250 300 350 400 450
Time (sec)

(d) CSFQ (K = 20 ms, Ka = 40 ms.)

50 100 150 200 250 300 350 400 450
Time (sec)

(f)FIFO

Figure 4.9: The throughputs of three RLM flows and one TCP flow along a 4 Mbps link.

59

RLM flow does not get its fair share (it is one layer below where it should be). We think this is due
to the bursty behavior of the TCP that is not detected by CSFQ soon enough, allowing the TCP to
opportunistically grab more bandwidth than its share at the expense of less aggressive RLM flows.
To test this hypothesis, we have changed the averaging time intervals to K = 20 ms, and Kn = 40
ms, respectively, which result in TCP flow bandwidth being restricted much earlier. As shown in
Figure 4.9(d), with these parameters all flows receive roughly 1 Mbps.

An interesting point to notice is that FRED does not provide fair bandwidth allocation in this
scenario. Again, as discussed in Section 4.4.2, this is due to the fact that RLM and TCP use different
end-to-end congestion control algorithms.

Finally, we note that we have performed two other similar experiments (not included here due
to space limitations): one in which the TCP flow is replaced by a CBR that sends at 4 Mbps, and
another in which we have both the TCP and the CBR flows together along with the three RLM flows.
The overall results were similar, except that in both experiments all flows received their shares under
CSFQ when using the original settings for the averaging intervals, i.e., K = 100 ms and Ka = 200
ms. In addition, in some of these other experiments where the RLM flows are started before the
TCP, the RLM flows get more than their share of bandwidth when RED and FIFO are used.

4.4.4 Different Traffic Models

So far we have only considered CBR and TCP traffic sources. We now look at two additional
source models with greater degrees of burstiness. We again consider a single 10 Mbps congested
link. In the first experiment, this link is shared by one ON-OFF source and 19 CBRs that send at
exactly their share, 0.5 Mbps. The ON and OFF periods of the ON-OFF source are both drawn from
exponential distributions with means of 200 ms and 19*200 ms respectively. During the ON period
the ON-OFF source sends at 10 Mbps. Note that the ON-time is on the same order as the averaging
interval K = 200m.s for CSFQ's rate estimation algorithm, so this experiment is designed to test to
what extent CSFQ can react over short time scales.

Algorithm delivered dropped
DRR 1080 3819
CSFQ 1000 3889
FRED 1064 3825
RED 2819 2080
FIFO 3771 1128

Table 4.1: Statistics for an ON-OFF flow with 19 Competing CBRs flows (all numbers are in packets)

The ON-OFF source sent 4899 packets over the course of the experiment. Table 4.1 shows the
number of packets from the ON-OFF source dropped at the congested link. The DRR results show
what happens when the ON-OFF source is restricted to its fair share at all times. FRED and CSFQ
also are able to achieve a high degree of fairness.

Our next experiment simulates Web traffic. There are 60 TCP transfers whose inter-arrival times
are exponentially distributed with the mean of 0.1 ms, and the length of each transfer is drawn from
a Pareto distribution with a mean of 40 packets (1 packet = 1 KB) and a shaping parameter of 1.06.

60

These values are consistent with those presented by Crovella and Bestavros [27]. In addition, there
is a single 10 Mbps CBR flow.

Algorithm mean time std. dev
DRR 46.38 197.35
CSFQ 88.21 230.29
FRED 73.48 272.25
RED 790.28 1651.38
FIFO 1736.93 1826.74

Table 4.2: The mean transfer times (in ms) and the corresponding standard deviations for 60 short TCPs in
the presence of a CBR flow that sends at the link capacity, i.e., 10 Mbps.

Table 4.2 presents the mean transfer time and the corresponding standard deviations. Here,
CSFQ and FRED do less well than DRR, but one order of magnitude better than FIFO and RED.

4.4.5 Large Latency

All of our experiments so far have had minimal latencies. In this experiment we again consider a
single 10 Mbps congested link, but now the flows have propagation delays of 100 ms in getting to
the congested link. The load is comprised of one CBR that sends at the link capacity and 19 TCP
flows. Table 4.3 shows the mean number of packets forwarded for each TCP flow during a 100 sec
time interval. CSFQ and FRED both perform reasonably well.

4.4.6 Packet Relabeling

Recall that when the dropping probability P of a packet is non-zero we relabel it with a new label
where Lnew = (1 - P)LoW so that the label of the packet will reflect the new rate of the flow. To
test how well this works in practice, we consider the topology in Figure 4.10, where each link is 10
Mbps. Note that as long as all three flows attempt to use their full fair share, the fair shares of flows 1
and 2 are less on link 2 (3.33 Mbps) than on link 1 (5 Mbps), so there will be dropping on both links.
This will test the relabeling function to make sure that the incoming rates are accurately reflected on
the second link. We perform two experiments (only looking at CSFQ's performance). In the first,
there are three CBRs sending data at 10 Mbps each. Table 4.4 shows the average throughputs over

Algorithm mean std. dev
DRR 5857.89 192.86
CSFQ 5135.05 175.76
FRED 4967.05 261.23
RED 628.10 80.46
FIFO 379.42 68.72

Table 4.3: The mean throughput (in packets) and standard deviation for 19 TCPs in the presence of a CBR
flow along a link with propagation delay of 100 ms. The CBR sends at the link capacity of 10 Mbps.

61

Source
Howl ^0MbPs

(10 Mbps)

Flow 2
(10 Mbps)

Linkl
(10 Mbps)

Router 2

Link 2 Sink
(10 Mbps), O

Flow 3
(10 Mbps)

Figure 4.10: Simulation scenario for the packet relabeling experiment. Each link has 10 Mbps capacity, and
a propagation delay of 1 ms.

Traffic Flow 1 Flow 2 Flow 3
CBR 3.267 3.262 3.458
TCP 3.232 3.336 3.358

Table 4.4: The throughputs resulting from CSFQ averaged over 10 sec for the three flows in Figure 4.10
alon? link 2.

10 sec of the three CBR flows. As expected, these rates are closed to 3.33 Mbps. In the second
experiment, we replace the three CBRs by three TCPs. Again, despite the TCP burstiness which
may negatively affect the rate estimation and relabeling accuracy, each TCP gets its fair share.

4.4.7 Discussion of Simulation Results

We have tested CSFQ under a wide range of conditions; conditions purposely designed to stress
its ability to achieve fair allocations. These tests, and the others we have run but cannot show
here because of space limitations, suggest that CSFQ achieves a reasonable approximation of fan-
bandwidth allocations in most conditions. Certainly CSFQ is far superior in this regard to the status
quo (FIFO or RED). Moreover, in all situations CSFQ is roughly comparable with FRED, and in
some cases it achieves significantly fairer allocations. Recall that FRED requires per-packet flow
classification while CSFQ does not, so we are achieving these levels of fairness in a more scalable
manner. However, there is clearly room for improvement in CSFQ. We think our buffer management
algorithm may not be well-tuned to the vagaries of TCP buffer usage, and so are currently looking
at adopting an approach closer in spirit to RED for buffer management, while retaining the use of
the labels to achieve fairness.

4.5 Related Work

An alternative to the allocation approach was recently proposed to address the problem of the ill-
behaved (unfriendly) flows. This approach is called the identification approach and it is best ex-
emplified by Floyd and Fall [36]. In this approach, routers use a lightweight detection algorithm
to identify unfriendly flows, and then explicitly manage the bandwidth of these unfriendly flows.
This bandwidth management can range from merely restricting unfriendly flows to no more than

62

Algorithm
Simulation 1 Simulation 2

UDP TCP-1 TCP-2 TCP-1 TCP-2
REDI 0.906 0.280 0.278 0.565 0.891
CSFQ 0.554 0.468 0.478 0.729 0.747

Table 4.5: Simulation 1 - The throughputs in Mbps of one UDP and two TCP flows along a 1.5 Mbps link
under REDI [36] and CSFQ, respectively. Simulation 2 - The throughputs of two TCPs (where TCP-2 opens
its congestion window three times faster than TCP-1), under REDI and CSFQ, respectively.

the currently highest friendly flow's share to the extreme of severely punishing unfriendly flows by
dropping all of their packets.

Compared to CSFQ, the solution to implementing the identification approach described by Floyd
and Fall [36] has several drawbacks. First, this solution requires routers to maintain state for each
flow that has been classified as un-friendly. In contrast, CSFQ does not require core routers to
maintain any per flow state. Second, designing accurate identification tests for unfriendly flows is
inherently difficult. Finally, the identification approach requires that all flows to implement a similar
congestion control mechanism, i.e., to be TCP friendly. We believe that this is overly restrictive as it
severely limits the freedom of designing new congestion protocols that best suit application needs.

Next, we discuss in more detail the difficulty of providing accurate identification tests for un-
friendly flows. One can think of the process of identifying unfriendly flows as occurring in two
logically distinct stages. The first and relatively easy step is to estimate the arrival rate of a flow.
The second, and harder, step is to use this arrival rate information (along with the dropping rate and
other aggregate measurements) to decide if the flow is unfriendly. Assuming that friendly flows use
a TCP-like adjustment method of increase-by-one and decrease-by-half, one can derive an expres-
sion (see [36] for details) for the bandwidth share S as a function of the dropping rate p, round-trip
time R, and packet size B: S « ^-7= for some constant 7. Because routers do not know the round
trip time R of flows, they use the lower bound of double the propagation delay of the attached link.
Unfortunately, this allows flows further away from the link to behave more aggressively without
being identified as being unfriendly.

To see how this occurs in practice, consider the following two experiments using the identifica-
tion algorithm described by Floyd and Fall [36], which we call RED with Identification (REDI).5

In each case there are multiple flows traversing a 1.5 Mbps link with a latency of 3 ms; the output
buffer size is 32 KB and all constants K, Ka, and Kc, respectively, are set to 400 ms. Table 4.5
shows the bandwidth allocations under REDI and CSFQ averaged over 100 sec. In the first experi-
ment (Simulation 1), we consider a 1 Mbps UDP flow and two TCP flows; in the second experiment
(Simulation 2) we have a standard TCP (TCP-1) and a modified TCP (TCP-2) that opens the con-
gestion window three times faster. In both cases REDI fails to identify the unfriendly flow, allowing
it to obtain almost two-thirds of the bandwidth. As we increase the latency of the congested link,
REDI starts to identify unfriendly flows. However, for some values as high as 18 ms, it still fails to
identify such flows. Thus, the identification approach still awaits a viable realization and, as of now,

We are grateful to Sally Floyd who provided us her script implementing the REDI algorithm. We used a similar script
in our simulation, with the understanding that this is a preliminary design of the identification algorithm. Our contention
is that the design of such an identification algorithm is fundamentally difficult due to the uncertainty of RTT.

63

the allocation approach is the only demonstrated method able to deal with the problem of unfriendly
flows.

The problem of estimating fair-share rate has also been studied in the context of designing
Available Bit Rate (ABR) algorithms for ATM networks. While the problems are similar, there arc
also several important differences. First, in ATM ABR, the goal is to provide explicit feedback to
end systems for policing puiposes so that cell loss inside the network can be prevented. In CSFQ,
there is no explicit feedback and edge policing. Packets from a flow may arrive at a much higher
rate than the flow's fair share rate and the goal of CSFQ is to ensure, by probabilistic dropping, that
such flows do not get more service than their shares. Second, since ATM already keeps per virtual
circuit (VC) state, additional per VC state is usually added to improve the accuracy and reduce the
time complexity of estimating the fair share rate [20, 33, 61]. However, there are several algorithms
that try to estimate the fair share without keeping per flow state [87, 95]. These algorithms rely on
the flow rates communicated by the end-system. These estimates are assumed to remain accurate
over multiple hops, due to the accurate explicit congestion control provided by ABR. In contrast, in
CSFQ, since the number of dropped packets cannot be neglected, the flow rates are re-computed at
each router, if needed (see Section 4.3.2.3). In addition, the estimation algorithms are themselves
quite different. While the algorithms in averaging over the flow rates communicated by the end-
systems, CSFQ uses linear interpolation in conjunction with exponentially averaging the traffic
aggregates at the router. Our preliminary analysis and evaluation show that our estimation algorithm
is more suited for our context.

4.6 Summary

In this chapter we have presented a solution that achieves fair bandwidth allocation, without re-
quiring core routers to maintain any per-flow state. The key idea is to use the DPS technique to
approximate the service provided by a reference network -— in which every node implements Fair
Queueing - within a SCORE network. Each node in the SCORE network implements a novel al-
gorithm, called Core-Stateless Fair Queueing (CSFQ). With CSFQ edge routers estimate flow rates
and insert them into the packet headers. Core routers simply perform probabilistic dropping on in-
put based on these labels and an estimate of the fair share rate, the computation of which requires
only aggregate measurements. Packet labels are rewritten by the core routers to reflect output rates,
so this approach can handle multi-hop situations.

We have tested CSFQ and several other algorithms under a wide variety of conditions. We
have found that CSFQ achieves a significant degree of fairness in all of these circumstances. While
not matching the fairness benchmark of DRR, it is comparable or superior to FRED, and vastly
better than the baseline cases of RED and FIFO. We know of no other approach that can achieve
comparable levels of fairness without any per-flow operations in the core routers.

64

Chapter 5

Providing Guaranteed Services in SCORE

In the previous chapter we demonstrated that using the SCORE/DPS framework makes it possible to
implement a service with a per flow semantic (i.e., per flow isolation) in a stateless core architecture.
In this chapter, we present a second example which shows that it is possible to provide per flow
bandwidth and delay guarantees in a core stateless network. We achieve this goal by using the DPS
technique to implement the functionalities required by the Guaranteed service [93] on both the data
and control paths in a SCORE network.

The rest of this chapter is organized as follows. The next section presents the motivation behind
the Guaranteed service and describes the problems with the existing solutions. Section 5.2 outlines
our solution to implement the Guaranteed service in a SCORE network. Sections 5.3 and 5.4 present
details of both our data and control path algorithms. Section 5.5 describes a design and a prototype
implementation of the proposed algorithms in IPv4 networks. Finally, Section 5.6 describes related
work, and Section 5.7 summarizes our findings.

5.1 Background

As new applications such as IP telephony, video-conferencing, audio and video streaming, and
distributed games are deployed in the Internet, there is a growing need to support more sophisticated
services than the best-effort service. Unlike traditional applications such as file transfer, these new
applications have much stricter timeliness and bandwidth requirements. For example, in order to
provide a quality comparable to today's telephone service, the end-to-end delay should not exceed
100 ms [64]. Since in a global network the propagation delay alone is about 100 ms, meeting such
tight delay requirements is a challenging task [7]. Similarly, to provide high quality video and audio
broadcasting, it is desirable to be able to ensure both bandwidth and delay guarantees.

To support these new applications, the IETF has proposed two service models: the Guaranteed
service [93] defined in the context of Intserv [82], and the Premium service [76] defined in the
context of Diffserv [32]. These services have important differences in both their semantic and im-
plementation complexity. At the service definition level, while the Guaranteed service can provide
both per flow delay and bandwidth guarantees [93], the Premium service can provide only per flow
bandwidth and per aggregate delay guarantees [76]. Thus, with the Premium service, if two flows
have different delay requirements, say d\ and efo, the only way to meet both these delay require-
ments is to ensure a delay of d = mm(d\, 62) to both flows. The main drawback of this approach is

65

that it can result in very low resource utilization for the premium traffic. In particular, as we show in
Appendix B.l, even if the fraction that can be allocated to the premium traffic on every link in the
network is veiy low (e.g., 10%), the queueing delay across a large network (e.g., 15 routers) can be
relative large (e.g., 240 ms). In contrast, the Guaranteed service can achieve both higher resource
utilization and tighter delay bounds, by better matching flow requirements to resource usage.

At the implementation level, current solutions to provide guaranteed services require each router
to process per flow signaling messages and maintain per flow state on the control path, and to
perform per flow classification, scheduling, and buffer management on the data path. Performing
per flow management inside the network affects both the network scalability and robustness. The
former is because the per flow operation complexity usually increases as a function of the number
of flows; the latter is because it is difficult to maintain the consistency of dynamic, and replicated
per flow state in a distributed network environment. While there are several proposals that aim to
reduce the number of flows inside the network, by aggregating micro-flows that follow the same
path into one macro-flow [5, 49], they only alleviate this problem, but do not fundamentally solve
it. This is because the number of macro flows can still be quite large in a network with many edge
routers, as the number of paths is a quadratic function of the number of edge nodes.

In contrast, the Premium service is implemented in the context of the Diffserv architecture
which distinguishes between edge and core routers. While edge routers process packets on a per
flow or per aggregate basis, core routers do not maintain any fine grained state about the traffic;
they simply forward premium packets based on a high priority bit set in the packet headers by
edge routers. Pushing the complexity to the edge and maintaining a simple core makes the data
plane highly scalable. However, the Premium service still requires admission control on the control
path. One proposal is to use a centralized bandwidth broker that maintains the topology as well
as the state of all nodes in the network. In this case, the admission control can be implemented
by the broker, eliminating the need for maintaining distributed reservation state. However, such a
centralized approach is more appropriate for an environment where most flows are long lived, and
set-up and tear-down events are rare.

In summary, the Guaranteed service is more powerful but has serious limitations with respect
to network scalability and robustness. On the other hand, the Premium service is more scalable,
but cannot achieve the levels of flexibility and utilization of the Guaranteed service. In addition,
scalable and robust admission control for the Premium service is still an open research problem.

In this chapter we show that by using the SCORE/DPS framework we can achieve the best
of the two worlds: provide Guaranteed service semantic while maintaining the scalability and the
robustness of the Diffserv architecture.

5.2 Solution Outline

Current solutions to implement the Guaranteed service assume a stateful network in which each
router maintains per flow state. The state is used by both the admission control module in the
control plane and the classifier and scheduler in the data plane.

In this chapter, we propose scheduling and admission control algorithms that provide the Guar-
anteed service but do not require core routers to maintain per flow state. The main idea behind our
solution is to approximate a reference stateful network that provides the Guaranteed service in a

66

Jitter-VC

Jitter-VC Jitter

CJVC
Jitter-VC Jitter-VC rx' CJVC CJVC

CJVC

a) Reference Stateful Network b) SCORE Network

Figure 5.1: (a) A reference stateful network that provides the Guaranteed service [93]. Each node imple-
ments the Jitter-Virtual Clock (Jitter-VC) algorithm on the data path, and per flow admission control on the
control path, (b) A SCORE network that emulates the service provided by the reference network. On the data
path, each node approximates Jitter-VC with a new algorithm, called Core-Jitter Virtual Clock (CJVC). On
the control path each node approximates per flow admission control.

SCORE network (see Figure 5.1). The key technique used to implement these algorithms is Dy-
namic Packet State (DPS). On the control path, our solution aims to emulate per flow admission
control, while on the data path, our algorithm aims to emulate a reference network in which every
node implements the Delay-Jitter-Controlled Virtual Clock (Jitter-VC) algorithm.

Among many scheduling disciplines that can implement the Guaranteed service we chose Jitter-
VC for several reasons. First, unlike various Fair Queueing algorithms [31, 79], in which a packet's
deadline can depend on state variables of all active flows, in Jitter-VC a packet's deadline depends
only on the state variables of the flow it belongs to. This property of Jitter-VC makes the algorithm
easier to approximate in a SCORE network. In particular, the fact that packet's deadline can be
computed exclusively based on the state variables of the flow it belongs to, makes it possible to
eliminate the need to replicate and maintain per flow state at all nodes along the path. Instead, per
flow state can be stored only at the ingress node, inserted into the packet header by the ingress node,
and retrieved later by core nodes, which then use it to determine the packet's deadline. Second, by
regulating traffic inside the network using delay-jitter-controllers (discussed below), it can be shown
that with very high probability, the number of packets in the server at any given time is significantly
smaller than the number of flows (see Section 5.3.3). This helps to simplify the scheduler.

In the next section, we present techniques that eliminate the need for data plane algorithms to
use per flow state at core nodes. In particular, at core nodes, packet classification is no longer needed
and packet scheduling is based on the state carried in packet headers, rather than per flow state stored
locally at each node. In Section 5.4, we will show that fully distributed admission control can also
be achieved without the need for maintaining per flow state at core nodes.

5.3 Data Plane: Scheduling Without Per Flow State

In this section, we first describe Jitter-VC, which is used to achieve guaranteed services in the
reference network, and then present our algorithm, called Core-Jitter-VC (CJVC). CJVC uses the
Dynamic Packet State (DPS) technique to emulate Jitter-VC in a SCORE network. In Appendix B.3
we present an analysis to show that a network of routers implementing CJVC provides the same

67

delay bound as a network of routers implementing the Jitter-VC algorithm.

5.3.1 Jitter Virtual Clock (Jitter-VC)

Jitter-VC is a non-work-conserving version of the Virtual Clock algorithm [127]. It uses a combina-
tion of a delay-jitter rate-controller [112, 126] and a Virtual Clock scheduler. The algorithm works
as follows: each packet is assigned an eligible time and a deadline upon its arrival. The packet is
held in the rate-controller until it becomes eligible, i.e., the system time exceeds the packet's eligible
time (see Figure 5.2(a)). The scheduler then orders the transmission of eligible packets according
to their deadlines.

Notation Comments

Pi the A-th packet of flow i

If length of /; ■'

«h arrival time of/;*' at node j
sA' ■

'•i
time when pk was sent by node j

1:1
eligible time of/;- at node j

S ■ deadline of/;- at node j

9f, time ahead of schedule: </f = r/A + r, — .<;*'•

6? slack delay of/;-'

*j propagation delay between nodes j and j + 1
TJ transmission time of a maximum size packet at node j

Table 5.1: Notations used in Section 5.3.

For the kth packet of flow i, its eligible time, eA';, and deadline, d*' •, at the j"' node on its path
are computed as follows:

e1- = = alj
ek- -- = max(afj + gf^-i, dfj1), i,j > 1,A: > 1

dk- --
»i.7

/A-
(5.1)

(5.2)

where l\ is the length of the packet, r, is the reserved rate for the flow, o|' is the packet's arrival time
at the jtk node traversed by the packet, and gk •, stamped into the packet header by the previous node,
is the amount of time the packet was transmitted before its schedule, i.e., the difference between the
packet's deadline and its actual departure time at node j — I. To account for the fact that the packet
transmission is not preemptive, and as a result a packet can miss its deadline by the time it takes to
transmit a packet of maximum size, TJ [127], we inflate the packet delay by TJ when computing r/f
(see Table 5.1).

Intuitively, the algorithm eliminates the delay variation of different packets by forcing all packets
to incur the maximum allowable delay. The purpose of having gh ■l is to compensate at node j
the variation of delay due to load fluctuation at the previous node, j - 1. Such regulations limit
the traffic burstiness caused by network load fluctuations, and as a consequence, reduce both buffer
space requirements and the scheduler complexity.

68

It has been shown that if a flow's long term arrival rate is no greater than its reserved rate, a
network of Virtual Clock servers can provide the same delay guarantee to the flow as a network
of Weighted Fair Queueing (WFQ) servers [35, 47, 100]. In addition, it has been shown that a
network of Jitter-VC servers can provide the same delay guarantees as a network of Virtual Clock
servers [28, 42]. Therefore, a network of Jitter-VC servers can provide the same guaranteed service
as a network of WFQ servers.

5.3.2 Core-Jitter-VC (CJVC)

In this section we propose a variant of Jitter-VC, called Core-Jitter-VC (CJVC), which does not
require per flow state at core nodes. In addition, we show that a network of CJVC servers can
provide the same guaranteed service as a network of Jitter-VC servers.

CJVC uses the DPS technique. The key idea is to have the ingress node to encode scheduling
parameters in each packet's header. The core routers can then make scheduling decisions based
on the parameters encoded in packet headers, thus eliminating the need for maintaining per flow
state at core nodes. As suggested by Eqs. (5.1) and (5.2), the Jitter-VC algorithm needs two state
variables for each flow i: rt, which is the reserved rate for flow i and d£ ■, which is the deadline of
the last packet from flow i that was served by node j. While it is straightforward to eliminate i\ by
putting it in the packet header, it is not trivial to eliminate d\^. The difference between r\ and d\^
is that while all nodes along the path keep the same ri value for flow i, d^ is a dynamic value that
is computed iteratively at each node. In fact, the eligible time and the deadline of pf depend on the
deadline of the previous packet of the same flow, i.e., d!?Jl.

A naive implementation using the DPS technique would be to precompute the eligible times
and the deadlines of the packet at all nodes along its path and insert all of them in the header. This
would eliminate the need for core nodes to maintain d\^. The main disadvantage of this approach
is that the amount of information carried by the packet increases with the number of hops along the
path. The challenge then is to design algorithms that compute d* • for all nodes while requiring a
minimum amount of state in the packet header.

Notice that in Eq. (5.1), the reason for node j to maintain d\, is that it will be used to compute
the deadline and the eligible time of the next packet. Since it is only used in a max operation, we
can eliminate the need for d) .• if we can ensure that the other term in max is never less than <$,-.
The key idea is then to use a slack variable associated with each packet, denoted 8\, such that for
every core node j along the path, the following holds

By replacing the first term of max in Eq. (5.1) with a£ • + ffy_i + 8$, the computation of the
eligible time reduces to

e*j = Oij+Ä-i + <J*' J>1 (5-4)

Therefore, by using one additional DPS variable, ö*, we eliminate the need for maintaining d* ■ at
the core nodes.

69

ei.i d'i cri dh Ci1., d), c?, a?,
node II 1 I 1 node 1K-
(ingrcss) . . ■, .-. (ingress) . . -> .■>

ch dL eü dj.2 e'2 <■/.: c-, dr..

ei'.i dj.?er.? d?.., ei, d!., e?, d?.,
node? I I I node? I 1 I |

eL d/4e^4d^4 e[4 d;,4e^4d^4

node 4 I I I node 4 1 I I
(egress) (egress)

lime time

(a) (b)

Figure 5.2: The time diagram of the first two packets of flow i along a four node path under (a) Jitter-VC,
and (b) CJVC, respectively. Propagation times, TTJ, and transmission times of maximum size packets, Tj, are
ignored.

The derivation of of proceeds in two steps. First, we express the eligible time of packet pf at

an arbitrary core node j, e£ •, as a function of the eligible time of pf at the ingress node, ef ^ (see

Eq. (5.7)). Second, we use this result and Eq. (5.4) to derive a lower bound for Sf.

We now proceed with the first step. Recall that gfp_l represents the time by which pf is trans-

mitted before its schedule at node j - 1, i.e., r/^?_i + TJ-\ - .s*?-_i, where TJ-\ is the maximum

time by which a packet can miss its deadline at node j — I. Let TXJ-\ denote the propagation delay

between nodes j — 1 and j. Then the arrival time of pf at node j, afp is given by

afd = s£j-i + 7T7_i + Tj_i (5.5)

= duj - 1 - df.j -1 + TTj -1 + Tj _ 1.

By replacing afp given by the above expression, in Eq. (5.4), and then using Eq. (5.2), we obtain

4j = 4j-i + $ + Kj~\+ Tj-i (5.6) "Z,j "1,3-

= eL-i + r: + ^ + 7rJ-i+TJ-i-
„k , li , xk

r

By iterating over the above equation we express ef, as a function of ef j:

Ilk ^ J_1

-1,3 L;,l e?,- = e?", + (j - 1) - + *f + E (*»> + r»')' J > l (5-7)
r> / T„=l

We are now ready to compute of. Recall that the goal is to compute the minimum öf which ensures
that Eq. (5.3) holds for every node along the path. After combining Eq. (5.3), Eq. (5.4) and Eq. (5.2)
this reduces to ensure that

lk~l

ef1>4-1^ef1>eff + ^, j>\ (5.8)
r,

By plugging efj and e* ■1 as expressed by Eq. (5.7) into Eq. (5.8), we get

xk ^ Xk-l , H - H , %i ^li I'i H,\

Ti {j - 1)
Sf > Jf-J + ' _ ' + -^ 7f-^ ^, J>1 (5.9)

70

ingress node
on packet p arrival

i = get.flow(p);
if (first_packet_of_flow(p, i))

e.j = current J,ime\
Si = 0;

else
6j — max(0, &; + (/,■ - lengt,h{p)) / r ,—

max(curre.7itJime — dj,0)/(h — 1)); /* Eq. (5.10) */
e-, = max(c,urre7itJ,ime,di);

li = length(p)\
di = e,- + Ij/rj-,

on packet p transmission
label (p) <— (ri,dj — current .time, Sj);

core/egress node
on packet p arrival

(r,g,6) f- label(p);
e = current J.ime + g + 8; /* Eq. (5.4) */
d = e + length(p) I r

on packet p transmission
if (core node)

label (p) *— (r,d — current dime, 8);
else /* this is an egress node */

clear Jabel(p);

Figure 5.3: Algorithms performed by ingress, core, and egress nodes at the packet arrival and departure.
Note that core and egress nodes do not maintain per flow state.

From Eqs. (5.1) and (5.2) we have e\x > d^1 = ef^1 + tf'1/n. Thus, the right-hand side term in

Eq. (5.9) is maximized when j = h. As a result we compute öf as

6} = 0, (5.10)
/ ik-1 ik Pk _ pk-l _lk-l I \

öf = «o.r+^i-''1 e* /* /r,i, k>i,h>i.
\ Ti h-\ J

In this way, CJVC ensures that the eligible time of every packet, pf, at node j is no smaller

than the deadline of the previous packet of the same flow at node j, i.e., efj > dfj1. In addition,

the Virtual Clock scheduler ensures that the deadline of every packet is not missed by more than

Tj [127].

In Appendix B.2, we have shown that a network of CJVC servers provides the same worst case

delay bounds as a network of Jitter-VC servers. More precisely, we have proven the following

property.

Theorem 2 The deadline of a packet at the last hop in a network of CJVC servers is equal to the

deadline of the same packet in a corresponding network of Jitter-VC servers.

71

The example in Figure 5.2 provides some intuition behind the above property. The basic obser-
vation is that, with Jitter-VC, not counting the propagation delay, the difference between the eligible
time of packet p\ at node j and its deadline at the previous node, j — 1, i.e., RJ' • — d\ ?-_l5 never
decreases as the packet propagates along the path. Consider the second packet in Figure 5.2. With
Jitter-VC, the differences ef — dj .:i (represented by the bases of the gray triangles) increase in j.
By introducing the slack variable Sf, CJVC equalizes these delays. While this change may increase
the delay of the packet at intermediate hops, it does not affect the end-to-end delay bound.

Figure 5.3 shows the computation of the scheduling parameters e\' • and <7*'7- by a CJVC server.
The number of hops h is computed at the admission time as discussed in Section 5.4.1.

5.3.3 Data Path Complexity

While our algorithms do not maintain per flow state at core nodes, there is still the need for core
nodes to perform regulation and packet scheduling based on eligible times and deadlines. The
natural question to ask is: why is this a more scalable scheme than previous solutions requiring per
flow management?

There are several scalability bottlenecks for solutions requiring per flow management. On the
data path, the expensive operations are per flow classification and scheduling. On the control path,
complexity results from the maintenance of consistent and dynamic state in a distributed environ-
ment. Among the three, it is easiest to reduce the complexity of the scheduling algorithm as there
is a natural tradeoff between the complexity and the flexibility of the scheduler [119]. In fact, a
number of techniques have already been proposed to reduce scheduling complexity, including those
requiring constant time complexity [98, 120, 125].

We also note that due to the way we regulate traffic, it can be shown that with very high proba-
bility, the number of packets in the server at any given time is significantly smaller than the number
of flows. This will further reduce the scheduling complexity and in addition reduce the buffer space
requirement. More precisely, in Appendix C we prove the following result.

Theorem 3 Consider a server traversed by n flows. Assume that the arrival times of the packets
from different flows are independent, and that all packets have the same size. Then, for any given
probability e, the queue size at any instant during a seiver busy period is asymptotically bounded
above by s, where

„ /Inn \ne \

-VM-r-T-1)1 <5'")

with a probability larger than 1 — e. For identical reservations ß = 1; for heterogeneous reserva-
tions ß = 3.

As an example, let n = 10r\ and e = 10~10, which is the same order of magnitude as the
probability of a packet being corrupted at the physical layer. Then, by Eq. (5.11) we obtain s = 4174
if all flows have identical reservations, and s = 7230 if flows have heterogeneous reservations. Thus
the probability of having more packets in the queue than specified by Eq. (5.11) can be neglected at
the level of the entire system even in the context of guaranteed services.

72

flows (n) bound (s) max. queue size

100 31 28
1,000 109 100

10,000 374 284
100,000 1276 880

1,000,000 4310 2900

flows (n) bound (s) max. queue size
100 53 30

1,000 188 95
10,000 • 648 309

100,000 2210 904
1,000,000 7465 2944

(a) (b)

Table 5.2: The upper bound of the queue size, s, computed by Eq. (5.11) for e = ^— (where n is the
number of flows) versus the maximum queue size achieved during the first n time slots of a busy period
over 105 independent trials, during the first n time slots of a busy period: (a) when all flows have identical
reservations; (b) when the flows' reservations differ by a factor of 20.

In Table 5.2 we compare the bounds given by Eq. (5.11) to simulation results. In each case
we report the maximum queue size achieved during the first n time slots of a busy period over
105 independent trials. We note that in the case of all flows having identical reservations we are
guaranteed that if the queue does not overflow during the first n time slots of a busy period, it will
not overflow during the rest of the busy period (see Corollary 1). Since the probability that a buffer
will overflow during the first v, time slots is no larger than n times the probability of the buffer
overflowing during an arbitrary time slot, we use e = ^— to compute the corresponding bounds.1

The results show that our bounds are reasonably close (within a factor of two) when all reserva-
tions are identical, but are more conservative when the reservations are different. Finally, we make
three comments. First, by performing per packet regulation at every core node, the bounds given
by Eq. (5.11) hold for any core node and are independent of the path length. Second, if the flows'
arrival patterns are not independent, we can easily enforce this by randomly delaying the first packet
from each backlogged period of the flow at ingress nodes. This will increase the end-to-end packet
delay by at most the queueing delay of one extra hop. Third, the bounds given by Eq. (5.11) are
asymptotic. In particular, in proving the results in Appendix C we make the assumption that n » s.
However, this a reasonable assumption in practice, as the most interesting cases involve high values
for n, and, as suggested by Eq. (5.11) and the results in Table 5.2, even for small values of e (e.g.,
10~10), n is much larger than s.

5.4 Control Plane: Admission Control With No Per Flow State

A key component of any architecture that provides guaranteed services is the admission control. The
main job of the admission control is to ensure that the network resources are not over-committed.
In particular it has to ensure that the sum of the reservation rates of all flows that traverse any link in
the network is no larger than the link capacity, i.e., J2i ri < C. A new reservation request is granted
if it passes the admission test at each hop along its path. As discussed in this chapter's introduction,
implementing such a functionality is not trivial: traditional distributed architectures based on sig-
naling protocols are not scalable and are less robust due to the requirement of maintaining dynamic
and replicated state; centralized architectures have scalability and availability concerns.

'More formally, let e' be the probability that the buffer does not overflow during the first n time slots of the busy
period. Then by taking e' = n • e, Eq. (5.11) becomes s = ^Jßn(\a.n — (ln£')/2 — 1).

73

sender

ingress
node

receiver

egress
node

data traffic

RSVP control messages

■► intra-domain
Signaling messages

Figure 5.4: Ingress-egress admission control when RSVP is used outside the SCORE domain.

In this section, we propose a fully distributed architecture for implementing admission control.
Like most distributed admission control architectures, in our solution, each node keeps track of
the aggregate reservation rate for each of its out-going links and makes local admission control
decisions. However, unlike existing reservation protocols, this distributed admission control process
is achieved without core nodes maintaining per flow state.

5.4.1 Ingress-to-Egress Admission Control

We consider an architecture in which a lightweight signaling protocol is used within the SCORE
domain. Edge routers are the interface between this signaling protocol and an inter-domain signaling
protocol such as RSVR For the purpose of this discussion, we consider only unicast reservations.
In addition, we assume a mechanism like the one proposed by Stoica and Zhang [103] or Multi-
Protocol Label Switching (MPLS) [17] that can be used to pin a flow to a route.

From the point of view of RSVP, a path through the SCORE domain is just a virtual link. There
are two basic control messages in RSVP: Path and Resv. These messages are processed only by edge
nodes; no operations are performed inside the domain. For the ingress node, upon receiving a Path
message, it simply forwards it through the domain. For the egress node, upon receiving the first Resv
message for a flow (i.e., there was no RSVP state for the flow at the egress node before receiving
the message), it will forward the message (message "1" in Figure 5.4) to the corresponding ingress
node, which in turn will send a special signaling message (message "2" in Figure 5.4) along the path
toward the egress node. Upon receiving the signaling message, each node along the path performs a
local admission control test as described in Section 5.4.2. In addition, the message carries a counter,
h, that is incremented at each hop. The final value h is used for computing the slack delay, S, (see
Eq. (5.10)). If we use the route pinning mechanism described in Chapter 6, message "2" is also
used to compute the label of the path between the ingress and egress. This label is used then by the
ingress node to make sure that all data packets of the flow are forwarded along the same path. When
the signaling message "2" reaches the egress node, it is reflected back to the sender, which makes
the final decision (message "3" in Figure 5.4). RSVP refresh messages for a flow that already has
per flow RSVP state installed at edge routers will not trigger additional signaling messages inside
the domain.

Since RSVP uses raw IP or UDP to send control messages, there is no need for retransmission

74

Notation Comments
n flow i's reserved rate
bf total number of bits flow i is entitled to transmit

during [s^^slj], i.e., b$ = n^ - sfj1)
R(t) aggregate reservation at time t

Rboundit) upper bound of R(t), used by admission test

RDPs{t) estimate of R(t), computed by using DPS

Unew v) sum of all new reservations accepted from the
beginning of current estimation interval until t

Real (t) upper bound of R(t), used to calibrate Rbound,
computed based on RDPS and Rnew

Table 5.3: Notations used in Section 5.4.3.

for our signaling messages, as message loss will not break the RSVP semantics. If the sender does
not receive a reply after a certain timeout, it simply drops the Resv message. In addition, as we will
show in Section 5.4.3, there is no need for a special termination message inside the domain when a
flow is torn down.

5.4.2 Per-Hop Admission Control

Each node needs to ensure that J2iri < C holds at all times. At first sight, one simple solution
that implements this test and also avoids per flow state is for each node to maintain the aggregate
reserved rate, R, where R is updated to R = R + r when a new flow with the reservation rate r is
admitted, and to R = R — r' when a flow with the reservation rate r' terminates. The admission
control then reduces to checking whether R + r < C holds. However, it can be easily shown
that such a simple solution is not robust with respect to various failure conditions such as packet
loss, partial reservation failures, and network node crashes. To handle packet loss, when a node
receives a set-up or tear-down message, the node has to be able to tell whether it is a duplicate of a
message already processed. To handle partial reservation failures, a node needs to "remember" what
decision it made for the flow in a previous pass. That is why all existing solutions maintain per flow
reservation state, be it hard state as in ATM UNI or soft state as in RSVP. However, maintaining
consistent and dynamic state in a distributed environment is itself challenging. Fundamentally, this
is because the update operations assume a transaction semantic, which is difficult to implement in
a distributed environment [4, 117].

In the remaining of the section, we show that by using DPS, it is possible to significantly reduce
the complexity of admission control in a distributed environment. Before we present the details of
the algorithm, we point out that our goal is to estimate a close upper bound on the aggregate reserved
rate. By using this bound in the admission test we avoid over-provisioning, which is a necessary
condition to provide deterministic service guarantees. This is in contrast to many measurement-
based admission control algorithms [62, 110], which, in the context of supporting controlled load
or statistical services, base their admission test on the measurement of the actual amount of traffic
transmitted. To achieve this goal, our algorithm uses two techniques. First, a conservative upper
bound of R, denoted Rbound> is maintained at each core node and is used for making admission

75

control decisions. R^mmd is updated with a simple rule: Rbovnd = Rbound + r whenever a new
request of a rate r is accepted. It should be noted that in order to maintain the invariant that Rbouvd
is an upper bound of R, this algorithm does not need to detect duplicate request messages, generated
either due to retransmission in case of packet loss or retry in case of partial reservation failures. Of
course, the obvious problem with this algorithm is that Rbound will diverge from R,. In the limit,
when Rb0U1}d reaches the link capacity C, no new requests can be accepted even though there might
be available capacity.

To address this problem, a separate algorithm is introduced to periodically estimate the aggregate
reserved rate. Based on this estimate, a second upper bound for R, denoted Rcah is computed and
used to recalibrate Rbovnd- An important aspect of the estimation algorithm is that the discrepancy
between the upper bound Rr„i and the actual reserved rate, R, can be bounded. The recalibration
then becomes the choice between the minimum of the two upper bounds R,b„in,d and RC(,i. The
estimation algorithm is based on DPS and does not require core routers to maintain per flow state.

Our algorithms have several important properties. First, they are robust in the presence of net-
work losses and partial reservation failures. Second, while they can over-estimate R, they will never
underestimate R. This ensures the semantics of the guaranteed service - while over-estimation can
lead to under-utilization of network resources, under-estimation can result in over-provisioning and
violation of performance guarantees. Finally, the proposed estimation algorithms are self-correcting
in the sense that over-estimation in a previous period will be corrected in the next period. This
greatly reduces the possibility of serious resource under-utilization.

5.4.3 Aggregate Reservation Estimation Algorithm

In this section, we present the estimation algorithm of the aggregate reserved rate which is performed
at each core node. In particular, we will describe how Rc„i is computed and how it is used to
recalibrate Rbound- In designing the algorithm for computing Rc.„i, we want to balance between two
goals: (a) Rcai should be an upper bound on R; (b) over-estimation errors should be corrected and
kept to the minimum.

To compute Rca,i, we start with an inaccurate estimate of R, denoted RDPS, and then make
adjustments to account for estimation inaccuracies. In the following, we first present the algorithm
that computes RDPS, then describe the possible inaccuracies and the corresponding adjustment
algorithms.

The estimate RDPS is calculated using the DPS technique: ingress nodes insert additional state
in packet headers, state which is in turn used by core nodes to estimate the aggregate reservation R.
In particular, a new state, b\, is inserted in the header of packet pf:

b^nis^-s^1), (5.12)

where siJ
1 and s^ are the times the packets p\~l and p\ are transmitted by the ingress node.

Therefore, b% represents the total amount of bits that flow i is entitled to send during the interval
[siJlisli,\\- The computation of RDPS is based on the following simple observation: the sum of
b values of all packets of flow i during an interval is a good approximation for the total number
of bits that flow i is entitled to send during that interval according to its reserved rate. Similarly,
the sum of b values of all packets is a good approximation for the total number of bits that all

76

edge node

core node

Figure 5.5: The scenario in which the lower bound of &,, i.e., r;(7V — Tj — Tj), is achieved. The arrows
represent packet transmissions. T\\ is the averaging window size; Tj is an upper bound on the packet inter-
departure time; Tj is an upper bound on the delay jitter. Both ml and m2 miss the estimation interval
TV.

flows are entitled to send during the corresponding interval. Dividing this sum by the length of
the interval gives the aggregate reservation rate. More precisely, let us divide time into intervals of
length Tw'- («fc, Uk+i], k > 0. Let bi(uk,Uk+i) be the sum of b values of packets in flow i received
during (uk, Uk+i]> and let B(uk, uk+i) be the sum of b values of all packets during (u^, uk+i\. The
estimate is then computed at the end of each interval (uk, Uk+\] as follows

RüPs(uk+\) =
B(uk,uk+i) B(uk,uk+i)

(5.13)
Uk+i - Uk Tw

While simple, the above algorithm may introduce two types of inaccuracies. First, it ignores
the effects of the delay jitter and the packet inter-departure times. Second, it does not consider the
effects of accepting or terminating a reservation in the middle of an estimation interval. In particular,
having newly accepted flows in the interval may result in the under-estimation of R(t) by RDPs{t)-
To illustrate this, consider the following simple example: there are no guaranteed flows on a link
until a new request with rate r is accepted at the end of an estimation interval (uk, iifc+i] • If no data
packet from the new flow reaches the node before uk+i, B(uk, Uk+i) would be 0, and so would be
RDPs(uk+i)- However, the correct value should be r.

In the following, we present the algorithm to compute an upper bound of R(iik+i), denoted
Rcai(uk+i)- In doing this we account for both types of inaccuracies. Let C(t) denote the set
of reservations at time t. Our goal is then to bound the aggregate reservation at time Uk+i, i.e.,
R(uk+i) = Hisc(uk i) ri- Consider the division of C(uk+\) into two subsets: the subset of new
reservations that were accepted during the interval (uk,Uk+i], denoted J\f(uk+i), and the subset
containing the rest of reservations which were accepted no later than «fc+i- Next, we express
R{uk+i) as

R{uk+i)= J2 n+ J2 ri- (5-14)
ieC(uk+1)\Af(uk+1) i£N{uk+i)

The idea is then to derive an upper bound for each of the two right-hand side terms, and compute

Real as the sum of these two bounds. To bound Y^iec(uk i)\N(uk+i) r«> we note tnat

77

B(uk.uk+])> Yl ft,-(«A-.«A-+i). (5-15)

The reason that (5.15) is an inequality instead of an equality is that when there are flows terminating
during the interval (v,k. uk+\], their packets may still have contributed to B(uk. uk+\) even though
they do not belong to C(uk+\) \ J\f(uk+i). Next, we compute a lower bound for bj(uk. uk+])• By
definition, since % G £(u/,-+i) \ A/"(«A-+I)>it follows that flow i holds a reservation during the entire
interval (uk, «A+I]- Let T/ be the maximum inter-departure time between two consecutive packets
of a flow at the edge node, and let Tj be the maximum delay jitter of a flow. Tj represents the
maximum difference between the delays experienced by two packets between ingress and egress
nodes. The ingress-egress delay of a packet represents the difference between the arrival time of the
packet at the egress node and the departure time of the packet at the ingress node. In the remainder
of this section, we assume that T\y is chosen such that both T/ and Tj are much smaller than T\y.
Now, consider the scenario shown in Figure 5.5 in which a core node receives the packets ml and
ml just outside the estimation window. Assuming the worst case in which ml incurs the lowest
possible delay, m2 incurs the maximum possible delay, and that the last packet before m.2 departs
Tj seconds earlier, it is easy to see that that the sum of the b values earned by the packets received
during the estimation interval by the core node cannot be smaller than rt(T\y — Tj —Tj). Thus, we
have

bi(uk,uk.+i) > n(Tw-T,-Tj), (5.16)

Vie£(uk+1)\Af(uk+l). (5.17)

By combining Eqs. (5.15) and (5.16), and Eq. (5.13) we obtain

E rt < £
ie£(«A.+i)\A'(Mj.+i) ieC(uk+1)\A{vk+i

bj(uk,uk+i)

T„-(l-/)

" 1-/

where f = (TT + Tj)/Tw.
Next, we bound the second right-hand side term in Eq. (5.14): J2ieM(uk. i) ri F°r tms' we intro-

duce a new global variable Rmew. Rnew is initialized at the beginning of each interval (uk, «/, +]] to
zero, and is updated to Rn,ew + r every time a new reservation, r, is accepted. Let Rnrw(t) denote
the value of this variable at time t. For simplicity, here we assume that a flow which is granted a
reservation during the interval (uk, uk+1] becomes active no later than uk+\? Then it is easy to see
that

E n < Rnew(uk+i). (5.19)

"Otherwise, to account for the case in which a reservation accepted during the interval (vi,-i, «*] becomes active
after wj. + RTT, we need to subtract RTT x Rncu,(uk) from B(uk, uk+i).

78

Per-hop Admission Control
on reservation request r
if (Rbound + r <C) I* perform admission test */

I^new ~~ H-new ~r f,

inbound ~ abound ~r ^•>

accept request;
else

deny request;
on reservation termination r /* optional */

rebound — Inbound ?\

Aggregate Reservation Bound Comp.
on packet arrival /;

b <— get.b(p); /* get b value inserted by ingress (Eq. (5.12)) */
L = L + b;

on time-out T\\-
RDPs = L/T\y\ /* estimate aggregate resen>ation */
Rbound = nain(fi6o„„rf,i?£)p.s/(l - /) + Rnew)'-

fi-new — U'

Figure 5.6: The control path algorithms executed by core nodes; Rnew is initialized to 0.

Eq. (5.19) holds when no duplicate reservation requests are processed, and none of the new accepted

reservations terminate during the interval. Then we define Rcai(uk+i) as

Rcal(uk+i) = X0™^^ + Rnew(uk+1). (5.20)

From Eq. (5.14), and Eqs. (5.18) and (5.19), it follows easily that Rcai{uk+\) is an upper bound for

R{uk+i), i.e., Rcai{uk+1) > R{uk+1). Finally, we use Rcai{uk+1) to recalibrate the upper bound

of the aggregate reservation, Rbound, at uk+i as

Rbound(uk+i) = mm(Rbound(uk),Rcai(uk+i)). (5.21)

Figure 5.6 shows the pseudocode of the control algorithms at core nodes. Next we make several

observations.
First, the estimation algorithm uses only the information in the current interval. This makes

the algorithm robust with respect to loss and duplication of signaling packets since their effects

are "forgotten" after one time interval. As an example, if a node processes both the original and

a duplicate of the same reservation request during the interval (uk, uk+i], Rbound will be updated

twice for the same flow. However, this erroneous update will not be reflected in the computation of

RDPs{uk+2), since its computation is based only on the b values received during (uk+i, uk+2\.
As a consequence, an important property of our admission control algorithm is that it can asymp-

totically reach a link utilization ofC(l-/)/(l + /). In particular, the following property is proven

in Appendix B.4:

79

Host!
ingress
router

100 Mbps egress
router

Host 3

Host 2 (Y X) Host 4

Figure 5.7: The test configuration used in experiments.

Theorem 4 Consider a link of capacity C at time t. Assume that no resen'ation terminates and
there are no resen'ation failures or request losses after time t. Then if there is sufficient demand
after t the link utilization approaches asymptotically (7(1 - /)/(l + /).

Second, note that since Rcai(-«/,.) is an upper bound of R{u,k), a simple solution would be to use
Rcai{uk) + Rncw, instead of Riloului, to perform the admission test during (u*.. u/,-+j]. The problem
with this approach is that RC(,i can overestimate the aggregate reservation R,. An example is given
in Section 5.5 to illustrate this issue (Figure 5.10(b)).

Third, we note that a possible optimization of the admission control algorithm is to add reser-
vation termination messages (see Figure 5.6). This will reduce the discrepancy between the upper
bound, Rbound, and the aggregate reservation R. However, in order to guarantee that Rilonn,i re-
mains an upper bound for R, we need to ensure that a termination message is sent at most once,
i.e., there are no retransmissions if the message is lost. In practice, this property can be enforced by
edge nodes, which maintain per flow state.

Finally, to ensure that the maximum inter-departure time is no larger than T/, the ingress node
may need to send a dummy packet in the case when no data packet arrives for a flow during an
interval Tj. This can be achieved by having the ingress node maintain a timer with each flow. An
optimization would be to aggregate all "micro-flows" between each pair of ingress and egress nodes
into one flow, compute b values based on the aggregated reservation rate, and insert a dummy packet
only if there is no data packet of the aggregate flow during an interval.

5.5 Experimental Results

We have fully implemented the algorithms described in this chapter in FreeBSD v2.2.6 and deployed
them in a testbed consisting of 266 MHz and 300 MHz Pentium II PCs connected by point-to-point
100 Mbps Ethernets. The testbed allows the configuration of a path with up to two core routers. The
details of the implementations and of the state encoding are presented in Chapter 8.

In the remainder of this section, we present results from four simple experiments. The ex-
periments are designed to illustrate the microscopic behaviors of the algorithms, rather than their
scalability. All experiments were run on the topology shown in Figure 5.7. The first router is con-
figured as an ingress node, while the second router is configured as an egress node. An egress node
also implements the functionalities of a core node. In addition, it restores the initial values of the
ip-ojf field. All traffic is UDP and all packets are 1000 bytes, not including the header.

In the first experiment we consider a flow between hosts 1 and 3 that has a reservation of 10
Mbps but sends at a much higher rate of about 30Mbps. Figures 5.8(a) and (b) plot the arrival and
departure times for the first 30 packets of the flow at the ingress and egress node, respectively. One

80

35

30

25

20 r

15

10

5

0

packet arrival
packet departure

0 10 15
Time (ms)

(a)

20 25

3b ' ■

packet arrival •
30 packet departure * „ ,.

2b
. t **

20
.j * *

15
o * *

10
c

.? °*

b ' ,:r

0
0 5 10 15 20 25

Time (ms)

(b)

Figure 5.8: Packet arrival and departure times for a 10 Mbps flow at (a) the ingress node, and (b) the egress
node.

thing to notice in Figure 5.8(a) is that the arrival rate at the ingress node is almost three times the
departure rate, which is the same as the reserved rate of 10 Mbps. This illustrate the non work
conserving nature of the CJVC algorithm, which enforces the traffic profile and allows only 10
Mbps traffic into the network. Another thing to notice is that all packets incur about 0.8 ms delay in
the egress node. This is because they are sent by the ingress node as soon as they become eligible,
and therefore g ~ l/r = 8 x 1052 bits/lOMbps = 0.84 ms. As a result, they will be held in the
rate-controller for this amount of time at the next hop3, which is the egress node in our case.

In the second experiment we consider three guaranteed flows between hosts 1 and 3 with reser-
vations of 10 Mbps, 20 Mbps, and 40 Mbps, respectively. In addition, we consider a fourth UDP
flow between hosts 2 and 4 which is treated as best effort. The arrival rates of the first three flows
are slightly larger than their reservations, while the arrival rate of the fourth flow is approximately
60 Mbps. At time 0, only the best-effort flow is active. At time 2.8 ms, the first three flows be-
come simultaneously active. Flows 1 and 2 terminate after sending 12 and 35 packets, respectively.
Figure 5.9 shows the packet arrival and departure times for the best-effort flow 4, and the packet de-
parture times for the real-time flows 1, 2, and 3. As can be seen, the best-effort packets experience
very low delay in the initial period of 2.8 ms. After the guaranteed flows become active, best-effort
packets experience longer delays while guaranteed flows receive service at their reserved rate. After
flow 1 and 2 terminate, the best-effort traffic grabs the remaining bandwidth.

The last two experiments illustrate the algorithms for admission control described in Section 5.4.3.
The first experiment demonstrates the accuracy of estimating the aggregate reservation based on the
b values carried in the packet headers. The second experiment illustrates the computation of the ag-
gregate reservation bound, Rbound, when a new reservation is accepted or a reservation terminates.
In these experiments we use an averaging interval, Tw, of 5 seconds, and a maximum inter-departure
time, Ti, of 500 ms. Because all packets have the same size, the ingress to egress delays experienced
by any two packets of the same flow are practically the same. As a result, we neglect the delay jitter,
i.e., we assume Tj = 0. This gives us / = (Tj + Tj)/Tw = 0.1.

3Note that since all packets have the same size, S = 0.

81

15 20
Time (ms)

Figure 5.9: The packets" arrival and departure times for four flows. The first three flows are guaranteed, with
reservations of 10 Mbps, 20 Mbps, and 40 Mbps. The last flow is best effort with an arrival rate of about 60
Mbps.

In the first experiment we consider two flows, one with a reservation of 0.5 Mbps, and the other
with a reservation of 1.5 Mbps. Figure 5.10(a) plots the arrival rate of each flow, as well as the
arrival rate of the aggregate traffic. In addition, Figure 5.10(a) plots the bound of the aggregate
reservation used by admission test, Rbotmd*tne estimate of the aggregate reservation 7?/>/>.s-, and the
bound Rcai used to recalibrate R.bmmd- According to the pseudocode in Figure 5.6, both RDPS and
Rcai are updated at the end of each estimation interval. More precisely, every 5 seconds RDPS is
computed based on the b values carried in the packet headers, while Rrai is computed as RDPS/(1 —

f) + Rnew Note that since, in this case, no new reservation is accepted, we have R„rir = 0,
which yields Rca{ = RDPS/{1 - /)• The important thing to note in Figure 5.10(a) is that the rate
variation of the actual traffic (represented by the continuous line) has little effect on the accuracy
of computing the aggregate reservation estimate Rpps, and consequently of Rr„j. In contrast,
traditional measurement based admission control algorithms, which base their estimation on the
actual traffic, would significantly underestimate the aggregate reservation, especially during the
time periods when no data packets are received. In addition, note that since in this experiment R,r„i
is always larger than Rbound< and no new reservations are accepted, the value of Rbmmd is never
updated.

In the second experiment we consider a scenario in which a new reservation of 0.5 Mbps is
accepted at time t = 18 sec and terminates approximately at time t = 39 sec. For the entire time
duration, plotted in Figure 5.10(b), we have background traffic with an aggregate reservation of
0.5 Mbps. Similar to the previous case, we plot the rate of the aggregate traffic, and, in addition,
Rboundi Rcah and RDPS- There are several points worth noting. First, when the reservation is
accepted at time t = 18 sec, R\,ound increases by the value of the accepted reservation, i.e., 0.5
Mbps (see Figure 5.6). In this way, Rbmmd is guaranteed to remain an upper bound of the aggregate
reservation R. In contrast, since both RDPS and Rca\ are updated only at the end of the estimation

82

1.8 1.4

1.2

1

I 0.8
2
0)
IS 0.6
<r

0.4

0.2

0
0 1

RDPS
Real

1.6
.-..-. - .'. - -.- - .- .- - .r . .__ - =- - -.- - --- - <- - _7- Rbound -~- -

Aaareaate Traffic —
1.4 : TL RDPS

Real
Rbound
Flow 1
Flow 2

Aggregate Traffic

K
-

1.2 iT 1

- •» 1
Q. .a
1- 0.8
0)
re
^ 0.6

0.4

0.2

0
(

accept
reservation
(0.5 Mbps)

terminate \
reservation \
(0.5Mbps) A

) 10 20 30
Time (sec)

40 50 6 5 20 25 30 35 40 45 50
Time (sec)

(a) (b)

Figure 5.10: The estimate aggregate reservation Rcai, and the bounds Rbound and Rca[in the case of (a)
two ON-OFF flows with reservations of 0.5 Mbps, and 1.5 Mbps, respectively, and in the case when (b) one
reservation of 0.5 Mbps is accepted at time t = 18 seconds, and then is terminated at t = 39 seconds.

Baseline 1 flow 10 flows 100 flows

avg std
ingress egress ingress egress ingress egress

avg std avg std avg std avg std avg std avg std
enqueue 1.03 0.91 5.02 1.63 4.38 1.55 5.36 1.75 4.60 1.60 5.91 1.81 5.40 2.33
dequeue 1.52 1.91 3.14 3.27 2.69 2.81 2.79 3.68 2.30 2.91 2.77 2.82 1.73 2.12

Table 5.4: The average and standard deviation of the enqueue and dequeue times, measured in fis.

interval, they underestimate the aggregate reservation, as well as the aggregate traffic, before time
t = 20 sec. Second, after Rcai is updated at time t = 20 sec, as RDPS/'(1 — /) + Rnew, the new
value significantly overestimates the aggregate reservation. This is the main reason for which we do
not use Rcai (+Rnew)> but Rbound' to do the admission control test. Third, note that unlike the case
when the reservation was accepted, Rbound does not change when the reservation terminates at time
t = 39 sec. This is simply because in our implementation no tear-down message is generated when
a reservation terminates. However, as Rcai is updated at the end of the next estimation interval (i.e.,
at time t = 45 sec), Rbound drops to the correct value of 0.5 Mbps. This shows the importance of
using Rcai to recalibrate Rbound- hi addition, this illustrates the robustness of our algorithm, i.e.,
the overestimation in a previous period is corrected in the next period. Finally, note that in both
experiments RDPS always underestimates the aggregate reservation. This is due to the truncation
errors in computing both the b values and the RDPS estimate.

5.5.1 Processing Overhead

To evaluate the overhead of our algorithm we have performed three experiments on a 300 MHz
Pentium II involving 1, 10, and 100 flows, respectively. The reservation and actual sending rates of
all flows are identical. The aggregate sending rate is about 20% larger than the aggregate reservation
rate. Table 5.4 shows the means and the standard deviations for the enqueue and dequeue times at

83

both ingress and egress nodes. Each of these numbers is based on a measurement of 1000 packets.
For comparison we also show the enqueue and dequeue times for the unmodified code. There are
several points worth noting. First, our implementation adds less than 5 //s overhead per enqueue
operation, and about 2 //,s per dequeue operation. In addition, both the enqueue and dequeue times
at the ingress node are greater than at the egress node. This is because ingress node performs per
flow operations. Furthermore, as the number of flows increases, the enqueue times increase only
slightly, i.e., by less than 20%. This suggests that our algorithm is indeed scalable in the number
of flows. Finally, the dequeue times actually decrease as the number of flows increases. This is
because the rate-controller is implemented as a calendar queue with each entry corresponding to
a 128 //,s time interval. Packets with eligible times falling between the same interval are stored in
the same entry. Therefore, when the number of flows is large, more packets are stored in the same
calendar queue entry. Since all these packets are transferred during one operation when they become
eligible, the actual overhead per packet decreases.

5.6 Related Work

The idea of implementing guaranteed services by using a stateless core architecture was proposed by
Jacobson [76] and Clark [24], and is now being pursued by the IETF Diffserv working group [32].
There are several differences between our scheme and the existing Diffserv proposals. First, our
DPS based algorithms operate at a much finer granularity both in terms of time and traffic aggre-
gates: the state embedded in a packet can be highly dynamic, as it encodes the current state of the
flow, rather than the static and global properties such as dropping or scheduling priority. In addition,
the goal of our scheme is to implement distributed algorithms that try to approximate the services
provided by a network in which all routers implement per flow management. Therefore, we can pro-
vide service differentiation and performance guarantees in terms of both delay and bandwidth on a
per flow basis. In contrast, the Premium service can provide only per flow bandwidth guarantees.
Finally, we propose fully distributed and dynamic algorithms for implementing both data and con-
trol functionalities, where existing Diffserv solutions rely on more centralized and static algorithms
for implementing admission control.

In this chapter, we propose a technique to estimate the aggregate reservation rate and use that
estimate to perform admission control. While this may look similar to measurement-based admis-
sion control algorithms [62, 110], the objectives and thus the techniques are quite different. The
measurement-based admission control algorithms are designed to support controlled-load type of
services, the estimation is based on the actual amount of traffic transmitted in the past, and is usu-
ally an optimistic estimate in the sense that the estimated aggregate rate is smaller than the aggregate
reserved rate. While this has the benefit of increasing the network utilization by the controlled-load
service traffic, it has the risk of incurring transient overloads that may cause the service degradation.
In contrast, our algorithm aims to support guaranteed service, and the goal is to estimate a close
upper bound on the aggregate resented rate even when the the actual arrival rate may vary.

Cruz [29] proposed a novel scheduling algorithm called SCED+ in the context of ATM networks.
In SCED+, virtual circuits sharing a same path segment are aggregated into a virtual path. At each
switch, only per virtual path state instead of per virtual circuit state needs to be maintained for
scheduling purpose. In addition, an algorithm is proposed to compute the eligible times and the

84

deadlines of a packet at subsequent nodes when the packet enters a virtual path. We note that by
doing this and using DPS to carry this information in the packets' headers, it is possible to remove
per path scheduling state from core nodes. However, unlike our solution, SCED+ does not provide
per flow delay differentiation within an aggregate. In addition, the SCED+ work focuses on the data
path mechanism, while we addresses both data path and control path issues.

5.7 Summary

In this chapter, we have described two distributed algorithms that implement QoS scheduling and
admission control in a SCORE network. Combined, these two algorithms significantly enhance
the scalability of both the data and control planes, while providing guaranteed services with flex-
ibility, utilization, and assurance levels similar to those traditionally implemented with per flow
mechanisms. The key technique used in both algorithms is Dynamic Packet State (DPS), which
provides lightweight and robust means for routers to coordinate actions and implement distributed
algorithms. By presenting a design and prototype implementation of the proposed algorithms in
IPv4 networks, we have demonstrated that it is indeed possible to apply DPS techniques and have
minimum incompatibility with existing protocols.

85

86

Chapter 6

Providing Relative Service Differentiation in SCORE

In this chapter we describe a third application of the DPS technique: implementing a large spatial
granularity network service, called Location Independent Resource Accounting (LIRA), that pro-
vides relative service differentiation. Unlike traditional services, such as the Guaranteed service,
that are defined on a per flow basis, large spatial granularity services are defined over a large num-
ber of destinations. A simple example would be to guarantee a user 10 Mbps bandwidth irrespective
of where or when the user sends traffic.

With LIRA, each user is assigned a rate at which it receives resource tokens. For each LIRA
packet, a user is charged a number of resource tokens, the amount depending on the congestion
level along the packet's path. The goal of LIRA is to achieve both high resource utilization and very
low loss rate. LIRA provides relative differentiation: a user which receives twice as many resource
tokens as another user will receive about twice as much bandwidth, as long as both users share the
same links. Note that in the case of one link, LIRA reduces to Weighted Fair Queueing, i.e., each
active user is allocated a capacity that is proportional to the rate at which it receives resource tokens.

We present an integrated set of algorithms that implement the LIRA service model in a SCORE
network. Specifically, we leverage the existing routing infrastructure to distribute the path costs to
all edge nodes. Since the path cost reflects the congestion level along the path, we use this cost to
design dynamic routing and load balancing algorithms. To avoid packet re-ordering within a flow,
we devise a lightweight mechanism based on DPS that binds a flow to a route so that all packets
from the flow will traverse the same route. To reduce route oscillation, we probabilistically bind a
flow to one of the multiple routes.

Traditional solutions to bind a flow to a route, also known as route-pinning, require routers to
either maintain per flow state, or maintain state that is proportional with the square of the number
of edge routers. By using DPS, we are able to significantly reduce this complexity. In particular,
we propose a route-pinning mechanism that requires routers to maintain state which is proportional
only to the number of egress routers.

The rest of the chapter is organized as follows. The next section motivates the LIRA service
model, and discusses the limitation of the existing alternatives. Section 6.3 describes the LIRA ser-
vice and outlines its implementation in a SCORE network. Section 6.4 presents simulation experi-
ments to demonstrate the effectiveness of our solution. Section 6.5 justifies the new service model
and discusses possible ways for our scheme to implement other differential service models. Finally,
in Section 6.6 we present the related work, and in Section 6.7 we summarize our contributions.

87

6.1 Background

Traditional service models that propose to enhance the best-effort service are usually defined on a
per-flow basis. Examples of such services are the Guaranteed and Controlled Load services [93,
121] proposed in the context of Intserv [82], and the Premium service [76] proposed in the context
of Diffserv [32]. While these services provide excellent support for a plethora of new point-to-
point applications such as IP telephony and remote diagnostics, there is a growing need to support
services at a coarser granularity than at a flow granularity. An example would be a service that is
defined irrespective of where or when a user sends its traffic. Such a service would be much easier
to negotiate by an organization since there is no need to specify the destinations in advance, usually
a daunting task in practice.1

An example of such a service is the Assured service which was recently proposed by Clark and
Wroclawski [23, 24] in the context of Diffserv. With the Assured service, a fixed bandwidth profile
is associated with each user. This profile describes the commitment of the Internet Service Provider
(ISP) to the user. In particular, the user is guaranteed that as long as its aggregate traffic does not
exceed its profile, all user's packets are delivered to their destinations with very high probability.
In the remainder of this chapter, we use the term of senice assurance to denote the probability
with which a packet is delivered to its destination. If a user exceeds its profile, the excess traffic is
forwarded as best-effort traffic. Note that the implicit assumption in the Assured service is that the
the traffic sent within a user profile has a much higher assurance (i.e., its packets are delivered with
a much higher probability) than the best effort traffic.

In this chapter, we propose a novel service, called Location Independent Resource Accounting
(LIRA), in which the service profile is described in terms of resource tokens rather than fixed band-
width profile. In particular, with LIRA, each user is assigned a token bucket in which it receives
resource tokens at a fixed rate. When a user sends a packet into the network, the user is charged a
number of resource tokens, the amount depending on the congestion level along the path traversed
by the packet. If the user does not have enough resource tokens in its token bucket, the packet is
forwarded as a best effort packet. Note that, unlike the Assured service which provides an absolute
service, LIRA provides a relative service. In particular, if a user receives resource tokens at a rate
that is twice the rate of another user, and if both users sent traffic along the same paths, the first user
will get twice as much aggregate throughput.

A natural question is why use a service that offers only relative bandwidth differentiation such
as LIRA, instead of a service that offers a fixed bandwidth profile such as the Assured service?
After all, the Assured service arguably provides a more powerful and useful abstraction; ideally, a
user is guaranteed a fixed bandwidth irrespective of where or when it sends traffic. In contrast, with
LIRA, the amount of traffic a user can send varies as a result of the congestion along the paths to
the destination.

The simple answer is that, while the fixed bandwidth profile is arguably more powerful, it is
unclear whether it can be efficiently implemented. The main problem follows directly from the
service definition, as a fixed bandwidth profile service does not put any restriction on where or
when a user can send traffic. This results in a fundamental conflict between maximizing resource
utilization and achieving a high service assurance. In particular, since the network does not know in

For example, for a Web content provider, it is very hard if not impossible to specify its clients a priori.

88

advance where the packets will go, in order to provide high service assurance, it needs to provision
enough resources to all possible destinations. In the worst case, when the traffic of all users traverses
the same congested link in the network, an ISP has to make sure that the sum of all user profiles
does not exceed the capacity of the bottleneck link. Unfortunately, this will result in severe resource
underutilization, which is unacceptable in practice. Alternatively, an ISP can provision resources for
the average rather than the worst case scenario. Such a strategy will increase the resource utilization
at the expense of service assurance.

In contrast, LIRA can achieve both high service assurance and resource utilization. However,
to achieve this goal, LIRA gives up the fixed bandwidth profile semantics. The bandwidth profile
of a user depends on the congestion in the network: the more congested the network, the lower
the profile of a user. Thus, while the Assured service trades the service assurance for resource
utilization, LIRA trades the fixed bandwidth service semantics for resource utilization. Next, we
argue that the trade-off made by LIRA gives a user better control on managing its traffic, which
makes LIRA a compelling alternative to the Assured service.

To illustrate this point, consider the case when the network becomes congested. In this case,
LIRA tries to maintain the level of service assurance by scaling back the profiles of all users that
send traffic in the congested portion of the network. In contrast, in the case of the Assured service,
network congestion will cause a decrease of the service assurance for all users that share the con-
gested portion of the network. Consider now a company whose traffic profile decreases from 10
to 5 Mbps, as a result of network congestion. Similarly, assume that, in the case of the Assured
service, the same company experiences a ten fold increase in its loss rate as the result of the network
congestion (while its service profile remains constant at 10 Mbps). Finally, assume that the CEO
of the company wants to make an urgent video conference call, for which requires 2 Mbps. With
LIRA, since the bandwidth required by the video conference is no larger than the company's traffic
profile, the CEO can initiate the conference immediately. In contrast, with the Assured service, the
CEO may not be able to start the conference due to the high loss rate. Worse yet, if the congestion is
caused by the traffic of other users, the company can do nothing about it. The fundamental problem
is that, unlike LIRA, the Assured service does not provide any protection in case of congestion.

6.2 Solution Outline

We consider the implementation of LIRA in a SCORE network, in which we use a two bit encoding
scheme. The first bit, called the preferred bit, is set by the application or user and indicates the
dropping preference of the packet. The second bit, called marking bit, is set by the ingress routers
of an ISP and indicates whether the packet is in- or out-of-profile. When a preferred packet arrives
at an ingress node, the node marks it, if the user has not exceeded its profile; otherwise the packet
is left unmarked.2 The reason to use two bits instead of one is that in an Internet environment with
multiple ISPs, even if a packet may be out-of-profile in some ISPs on the earlier portion of its path,
it may still be in-profile in a subsequent ISP. Having a dropping bit that is unchanged by upstream
ISPs on the path will allow downstream ISPs to make the correct decision. Core routers implement
a simple behavior of priority-based dropping. Whenever there is a congestion, a core router always

2In this chapter, we will use the terminology of marked or unmarked packets to refer to packets in or out-of the service
profile, respectively.

89

drops unmarked packets first. In this chapter, we focus on mechanisms for implementing LIRA in
a single ISP. We assume the following model for the interaction of multiple ISPs: if ISP A is using
the service of ISP B, then ISP B will treat ISP A just like a regular user. In particular, the traffic
from all ISP A's users will be treated as a single traffic aggregate.

While the above forwarding scheme can be easily implemented in a Diffserv network, it turns
out that to effectively support LIRA we need the ability to perform route-pinning, that is, to bind
a flow to a route so that all packets from the flow will traverse the same path. Unfortunately,
traditional mechanisms to achieve route pinning require per flow state. Even the recently proposed
Multi Protocol Label Switching (MPLS) requires routers to maintain an amount of state proportional
to the square of the number of edge routers. In a large domain with thousands of edge nodes such
overhead may be unacceptable.

To address this problem we use the Dynamic Packet State (DPS) technique. With each packet
we associate a label that encodes the packet's route from the current node to the egress router. Packet
labels are initialized by ingress routers, and are used by core routers to route the packets. When a
packet is forwarded, the router updates its label to reflect the fact that the remaining path has been
reduced by one hop. By using this scheme, we are able to significantly reduce the state maintained
by core routers. More precisely, this state becomes proportional to the number of egress nodes
reachable from the core router, which can be shown to be optimal. The route pinning mechanism is
described in detail in Section 6.3.4.

6.3 LIRA: Service Differentiation based on Resource Right Tokens

In this section, we present our differential service model, called LIRA (Location Independent Re-
source Accounting), with service profiles defined in terms of resource tokens rather than absolute
amounts of bandwidth.

With LIRA, each user % is assigned a service profile that is characterized by a resource token
bucket (r-j, &,;), where r, represents the resource token rate, and hi represents the depth of the bucket.
Unlike traditional token buckets where each preferred bit entering the network consumes exactly
one token, with resource token buckets the number of tokens needed to admit a preferred bit is a
dynamic function of the path it traverses.

Although there are many functions that can be used, we consider a simple case in which each
link i is assigned a cost, denoted c,(£), which represents the amount of resource tokens charged for
sending a marked bit along the link at time /. The cost of sending a marked packet is computed as
J2ieP L x ci W' where L is the packet length and P is the set of links traversed by the packet. While
we focus on unicast communications in this chapter, we note that the cost function is also naturally
applicable to the case of multicast. As we will show in Section 6.4, charging a user for every link
it uses and using the cost in routing decisions helps to increase the network throughput. In fact, it
has been shown by Ma et al. [68] that using a similar cost function3 for performing the shortest path
routing gives the best overall results when compared with other dynamic routing algorithms.

It is important to note that the costs used here are not monetary in nature. Instead they are
reflecting the level of congestion and the resource usage along links/paths. This is different from a

3It can be shown that when all links have the same capacity our cost is within a constant factor from the cost of
shortest-dist(P, 1) algorithm proposed by Ma et al. [68].

90

|- Ingress Router Algorithm —|

upon packet p arrival:
bit_cost = c\ + c2 + c3 + cA;
cost(p) = length(p)*bit_cost;

if (preferred(p) and L > cost(p))
mark(p);
L = L- cost(p);

r = resource token rate
L = current bucket level
ci = per bit cost of link i

Figure 6.1: When a preferred packet arrives, the node computes the packet's cost, and the packet is marked
if there are sufficient resource tokens.

pricing scheme which represents the amount of payment made by an individual user. Though costs
can provide valuable input to pricing policies, in general, there is no necessary direct connection
between cost and price.

Figure 6.1 illustrates the algorithm performed by ingress nodes. When a preferred packet arrives
at an ingress node, the node computes its cost based on the packet length and the path it traverses. If
the user has enough resource tokens in its bucket to cover this cost, the packet is marked, admitted
in the network, and the corresponding number of resource tokens is subtracted from the bucket
account. Otherwise, depending on the policy, the packet can be either dropped, or treated as best
effort. Informally, our goal at the user level is to ensure that users with "similar" communication
patterns receive service (in terms of aggregate marked traffic) in proportion to their token rates.

The crux of the problem then is the computation and distribution of the per marked bit cost
for each path. In this section, we first present the algorithm to compute the cost of each marked
bit for a single link, and next present an algorithm that computes and distributes the per-path cost
of one marked bit by leveraging existing routing protocols. We then argue that this dynamic cost
information is also useful for multi-path routing and load balancing purposes. To avoid route oscil-
lation and packet reordering within one application-level flow, we introduce two techniques. First, a
lightweight scheme is devised to ensure that all packets from the same application-level flow always
travel the same path. The scheme is lightweight in the sense that no per flow state is needed in any
core routers. Second, rather than using a simple greedy algorithm that always selects the path with
the current lowest cost, we use a probabilistic scheme to enhance system stability.

6.3.1 Link Cost Computation

A natural goal in designing the link cost function in LIRA is to avoid dropping marked packets.
Since in the worst case all users can compete for the same link at the same time, a sufficient condition
to avoid this problem is to have a cost function that exceeds the number of tokens in the system
when the link utilization approaches unity. Without bounding the number of tokens in the system,

91

this suggests a cost function that goes to infinity when the link utilization approaches unity. Among
many possible cost functions that exhibit this property, we choose the following one:

'<" = T^y- (61)

where a is the fixed cost of using the link4 when it is idle, and u(t) represents the link utilization at
time t. In particular, ?/.(/) = R(t)/C, were R(t) is the traffic throughput at time /, and C represents
the link capacity. Recall that c(t) is measured in tokens/bit and represents how much a user is
charged for sending a marked bit along that link at time t.

In an ideal system, where costs arc instantaneously distributed and the rate of the incoming
traffic varies slowly, a cost function as defined by Eq. (6.1) guarantees that no marked packets are
dropped inside the core. However, in a real system, computing and distributing the cost information
incur overhead, so they are usually done periodically. In addition, there is always the issue of
propagation delay. Because of these, the cost information used in admitting packets at ingress nodes
may be obsolete. This may cause packet dropping, and lead to oscillations. Though oscillations
are inherent to any system in which the propagation of the feed-back information is non-zero, the
sensitivity of our cost function when the link utilization approaches unity makes things worse. In
this regime, an incrementally small traffic change may result in an arbitrary large cost change. In
fact one may note that Eq. (6.1) is similar to the equation describing the delay behavior in queueing
systems [65], which is known to lead to system instability when used as a congestion indication in
a heavily loaded system.

To address these issues, we use the following iterative formula to compute the link cost:

c(tl) = a + c(t,^)R{t'^i). (6.2)

where R(t', t") denotes the average bit rate of the marked traffic during the time interval [/', t"). It
is easy to see that if the marked traffic rate is constant and equal to R,, the above iteration converges
to the cost given by Eq. (6.1). The main advantage of using Eq. (6.2) over Eq. (6.1) is that it is
more robust against large variations in the link utilization. In particular, when the link utilization
approaches unity the cost increases by at most a every iteration. In addition, unlike Eq. (6.1),
Eq. (6.2) is well defined even when the link is congested, i.e., R(tj_i,tj) = C.

Unfortunately, computing the cost by using Eq. (6.2) is not as accurate as by using Eq. (6.1).
The link may become and remain congested for a long time before the cost increase is large enough
to reduce the arrival rate of marked bits. This may result in the loss of marked packets, which we
try to avoid. To alleviate this problem we use only a fraction of the link capacity, C = ßC, for the
marked traffic, the remaining being used to absorb the unexpected variations due to inaccuracies in
the cost estimation.5 Here, we chose ß between 0.85 and 0.9.

6.3.2 Path Cost Computation and Distribution

In LIRA, the cost of a marked bit over a path is the sum of the costs of a marked bit over each link
on the path. Once the cost for each link is computed, it is easy to compute and distribute the path

4In practice, the network administrator can make use of a to encourage/discourage the use of the link. Simply by
changing the fixed cost a, a link will cost proportionally more or less at the same utilization.

sßis similar to the pressure factor used in some ABR congestion control schemes for estimating the fair share [61, 87].

92

ROUTING TABLE
DST COST LABEL !

id5 7 id2®id3®id5\

8 id2®id4®id5 \
• •

• • •
m • •

FORWARDING TABLE

FORWARDING TABLE
LABEL DST NEXT HOP

id2®id3®id5 id5 M2
id2®id4®id5 id5 id2

• • •
m • •

LABEL DST^EXTHOP;

id3®id5 idS M3
id 4® id 5 idS id4 S

• • •
m
m •

FORWARDING TABLE

LABEL DST NEXT HOP

\
id 5 id5 : id5
• • •

m
m
m

Figure 6.2: Example of route binding via packet labeling.

cost by leveraging existing routing protocols. For link state algorithms, the cost of each marked bit
can be included as part of the link state. For distance vector algorithms, we can pass and compute
the partial path cost in the same way the distance of a partial path is computed with respect to the
routing metric.

6.3.3 Multipath Routing and Load Balancing

Since our algorithm defines a dynamic cost function that reflects the congestion level of each link,
it is natural to use this cost function for the purpose of multi-path routing. To achieve this, we
compute the k shortest paths for each destination or egress node using the unit link metric. While
the obvious solution is to send packets along the path with the minimum cost (in the sense of LIRA,
see Section 6.3) among the k paths, this may introduce two problems: (a) packet re-ordering within
one application-level flow, which may negatively affect end-to-end congestion control algorithms,
and (b) route oscillation, which may lead to system instability.

We introduce two techniques to address these problems. First, we present a lightweight mech-
anism that binds a flow to a route so that all packets from the flow will traverse the same route.
Second, to reduce route oscillation, for each new flow, an ingress node probabilistically binds it to
one of the multiple routes. By carefully selecting the probability, we can achieve both stability and
load-balancing.

6.3.4 Route Pinning

As discussed earlier, we will maintain multiple routes for each destination. However, we would
like to ensure that all packets belonging to the same flow are forwarded along the same path. To

93

implement this mechanism we use the Dynamic Packet State (DPS) technique.
The basic idea is to associate with each path a label computed as the XOR over the identifiers of

all routers along the path, and then associate this label with each packet of a flow that goes along that
path. Here we use the IP address as the identifier. More precisely, a path P = (idu, id\...., id,,),
where ido is the source and id,, is the destination, is encoded at the source (ido) by IQ = id\ <g>
id-2 <g>... <E> id,,. Similarly, the path from id\ to id,, is encoded at id\ by l\ = id-i ® ... <8> id,,. A
packet that travels along path P is labeled with IQ as it is leaving ido, and with l\ as it is leaving d\.
By using XOR we can iteratively re-compute the label based on the packet's current label and the
node identifier. As an example, consider a packet that is assigned label IQ at node ido. When the
packet arrives at node id\, the new label corresponding to the remaining of the path, (id\,..., id,,),
is computed as follows:

h = idi ® k = (6.3)

id\ ® (idi ® id-2 ® • • • ® id,,) = id-2 ® ■ ■ ■ ® id,,.

It is easy to see that this scheme guarantees that the packet will be forwarded exactly along the path
P. Here, we implicitly assume that all alternate paths between two end-nodes have unique labels.
Although theoretically there is a non-zero probability that two labels may collide, we believe that
for practical purposes it can be neglected. One possible way to reduce the label collision probability
would be to use a hash function to translate the IP addresses into labels. By using a good hash
function, this will result in a more random distribution of router labels. Another possibility would
be to explicitly label routers to reduce or even eliminate the collision probability. Note that this
solution will require to maintain the mapping between router IP addresses and router labels, which
can be difficult in practice. One last point worth noting is that even if two alternate paths have the
same label, this will not jeopardize the correctness of our scheme: the worst thing that can happen
is an alternate path to be ignored, which will only lead to a decrease in utilization.

Next we give some details of how this mechanism can be implemented by simply extending the
information maintained by each router in the routing and forwarding tables. Besides the destination
and the route cost, each entry in the routing table also contains the label associated with that path.

< dst,<costwJ^ >,...< cost{k\l{k)) » (6.4)

Similarly, the forwarding table should contain an entry for each path:

< lw,dst, next,Jiop{1) > ... < l{k\dst, next-hop{k) > (6.5)

In Figure 6.2 we give a simple example to illustrate this mechanism. Assume that nodes id] and
id*, are edge nodes, and there are two possible paths from id\ to id^ of costs 7, and 8, respectively.
Now, assume a packet destined to id-, arrives at id\. First the ingress node idy searches the classifier
table (not shown in the Figure) that maintains a list of all flows to see whether this is the first packet
of a flow. If it is, the router uses the information in the routing table to probabilistically bind the
flow to a path to «%. At the same time it labels the packet with the encoding of the selected route.
In our example, assume the path of cost 7, i.e., (id\,id2,idz,idz,), is selected. If the arriving packet
is not the first packet of the flow, the router automatically labels the packet with the encoding of the
path to which the flow is bound. This can be simply achieved by keeping a copy of the label in the

94

classifier table. Once the packet is labeled, the router checks the forwarding table for the next hop
by matching the packet's label and its destination. In our case, this operation gives us id? as the next
hop. When the packet arrives at node id,2 the router first computes a new label based on the current
packet label and the router identifier: label = icfo ® label. The new label is then used to lookup the
forwarding table.

It is important to note that the above algorithm assumes per flow state only at ingress nodes.
Inside the core, there is no per flow state. Moreover, the labels can speed-up the table lookup if used
as hash keys.

6.3.5 Path Selection

While the above forwarding algorithm ensures that all packets belonging to the same flow traverse
the same path, there is still the issue of how to select a path for a new flow. The biggest concern
with any dynamic routing protocol based on congestion information is its stability. Frequent route
changes may lead to oscillations.

To address this problem, we associate a probability with each route and use it in binding a new
flow to that route. The goal in computing this probability is to equalize the costs along the alternate
routes, if possible. For this we use a greedy algorithm. Every time the route costs are updated
we split the set of routes in two equal sets, where all the routes in one set have costs larger than
the routes in the second set. If there is an odd number of routes, we leave the median out. Then,
we decrease the probability of every route in the first set, the one which contains the higher cost
routes, and increase the probability of each route in the second set by a small constant S. It can be
shown that in a steady-state system, this algorithm converges to the desired solution, in which the
difference between the costs of the two alternate paths is bounded by 6.

6.3.6 Scalability

As described so far, it is required that our scheme maintains k entries for each destination in both the
forwarding table used by the forwarding engine and the routing table used by the routing protocol,
where k is the maximum number of alternate paths. While this factor may not be significant if k
is small, a more serious issue that potentially limits the scalability of the algorithm is that in its
basic form it requires that an entry be maintained for each destination, where in reality, to achieve
scalability, routers really maintain the longest-prefix of a group of destinations that share the same
route [41]. Since our algorithm works in the context of one ISP, we can maintain an entry for each
egress node instead of each destination. We believe this is sufficient as the number of egress nodes
in an ISP is usually not large.

However, assume that the number of egress nodes in an ISP is very large so that significant
address aggregation is needed. Then we need to also perform cost aggregation. To illustrate the
problem consider the example in Figure 6.3. Assume the addresses of do and di are aggregated
at an intermediate router r\. Now the question is how much to charge a packet that enters at the
ingress node TQ and has the destination d0- Since we do not keep state for the individual routes
to do, and d\ respectively, we need to aggregate the cost to these two destinations. In doing this,
a natural goal would be to maintain the total charges the same as in a reference system that keeps
per route state. Let i?(ri, d$) denote the average traffic rate from n to di, i = 1,2. Then, in the

95

Figure 6.3: Topology to illustrate the label and cost aggregation.

reference system that maintains per route state, the total charge per time unit for the aggregate traffic
from 7'] to do and d\ is: cost{v\. d,o)R(v\, do) + cost(r\, d\)R{v\. d\). In a system that does not
maintain per route state, the charge for the same traffic is cost(r\.do.d[){R{r\,do) + R.{v\,d])),
where cost(ri, do, d\) denotes the per bit aggregate cost. This yields

.., , , x cost{vY.do)R{r{.do)
costin.do.di) = — r-+ (6.6)

R{ri,d0) + R 7'i.fli)
co.it{ri.di)R(r\,d

i2(n.rfo) + Ä(n.rfi

Thus, any packet that arrives at ro and has either destination do or d\ is charged with cost(vo, r\) +
cost(ri,do,d\). Obviously, route aggregation increases the inaccuracies in cost estimation. How-
ever, this may be alleviated by the fact that the route aggregation usually exhibits high localities.

Another problem with address aggregation is that a label can no longer be used to encode the
entire path to the destination. Instead, it is used to encode the common portion of the paths to the
destinations in the aggregate set. This means that a packet should be relabeled at every router that
performs aggregation involving the packet's destination. The most serious concern with this scheme
is that it is necessary to maintain per flow state and perform packet classification at a core router (r\
in our example). Fortunately, this scalability problem is alleviated by the fact that we need to keep
per flow state only for the flows whose destination addresses are aggregated at the current router.
Finally, we note that this problem is not specific to our scheme; any scheme that (i) allows multiple
path routing, (ii) performs load balancing, and (iii) avoids packet reordering has to address it.

6.4 Simulation Results

In this section we evaluate our model by simulation. We conduct four experiments: three involving
simple topologies which help to gain a better understanding of the behavior of our algorithms, and
one more realistic example with a larger topology and more complex traffic patterns. The first
experiment shows that if all users share the same congested path, then each user receives service
in proportion to its resource token rate. This is the same result one would expect from using a
weighted fair queueing scheduler on every link, with the weights set to the users' token rate. In
the second experiment, we show that by using dynamic routing and load balancing, we are able to
achieve the same result - that is, each user receives service in proportion to its token rate - in a
more general configuration where simply using weighted fair queueing scheduler on every link is
not sufficient. In the third experiment, we show how load balancing can significantly increase the

96

overall resource utilization. Finally, the fourth experiment shows how the behaviors observed in the
previous experiments scale to a larger topology.

6.4.1 Experiment Design

We have implemented a packet level simulator which supports both Distance Vector (DV) and Short-
est Path First (SPF) routing algorithms. To support load balancing we extended these algorithms to
compute the k-th shortest paths. The time interval between two route updates is uniformly dis-
tributed between 0.5 and 1.5 of the average value. As shown by Floyd and Jacobson [38], this
choice avoids the route-update self-synchronization. In SPF, when a node receives a routing mes-
sage, it first updates its routing table and then forwards the message to all its neighbors, except the
sender. The routing messages are assumed to have high priority, so they are never lost. In the next
sections we compare the following schemes:

• BASE - this scheme models today's best-effort Internet, and it is used as a baseline in our
comparison. The routing protocol uses the number of hops as the distance metric and it is
implemented by either DV or SPF. This scheme does not implement service differentiation,
i.e., both marked and unmarked packets are identically treated.

• STATIC - this scheme implements the same static routing as BASE. In addition, it implements
LIRA by computing the link cost as described in Section 6.3.1, and marking packets at each
ingress node according to the algorithm shown in Figure 6.1.

• DYNAMIC-A; - this scheme adds dynamic routing and load balancing to STATIC. The rout-
ing protocol uses a modified version of DV/SPF to find the first k shortest paths. Note that
DYNAMIC-1 is equivalent to STATIC.

Each router implements a FIFO scheduling discipline with a shared buffer and a drop-tail man-
agement scheme. When the buffer occupancy exceeds a predefined threshold, newly arrived un-
marked packets are dropped. Thus, the entire buffer space from the threshold up to its total size is
reserved to the in-profile traffic.6 Unless otherwise specified, throughout all our experiments we use
a buffer size of 256 KB and a threshold of 64 KB.

The two main performance indices that we use in comparing the above schemes are the user
in-profile and user overall throughputs. The user in-profile throughput represents the rate of the user
aggregate in-profile traffic delivered to its destinations. The overall throughput represents the user's
entire traffic — i.e., including both the in- and out-of profile traffic — delivered to its destinations.
In addition, we use user dropping rate of the in-profile traffic to characterize the level of service
assurance.

Recent studies have shown that the traffic in real networks exhibits the self-similar property [27,
80, 81, 118] — that is, the traffic is bursty over widely different time scales. To generate self-
similar traffic we use the technique originally proposed by Willinger et al. [118], where it was

6We note that this scheme is a simplified version of the RIO buffer management scheme proposed by Clark and
Wroclawski [24] In addition, RIO implements a Random Early Detection (RED) [37] dropping policy, instead of drop-
tail, for both in- and out-of profile traffic. RED provides an efficient detection mechanism for the adaptive flows, such as
TCR allowing them to gracefully degrade their performances when congestion occurs. However, since in this study we
are not concerned with the behavior of individual flows, for simplicity we chose to not implement RED.

97

4.38
3.88

2.78 2.83 3.05 3.06

4.40

3.13

2.45

(a)
SI S2 S3

BASH
SI S2 S3

STATIC
SI S2 S3

STATIC

besl-efforl G iivprolllc H out-of profile D in-profllc I oul-of profile

(b) (c)

Figure 6.4: (a) Topology used in the first experiment. Each link has 10 Mbps capacity. 51, 52, and 53 send
all their traffic to D\. (b) The throughputs of the three users under BASE and STATIC schemes, (c) The
throughputs under STATIC when the token rate of 52 is twice the rate of 51/52.

shown that the superposition of many ON-OFF flows with ON and OFF periods drawn from a heavy
tail distribution, and which have fixed rates during the ON period results in self-similar traffic. In
particular, Willinger et al. [118] show that the aggregation of several hundred of ON-OFF flows is a
reasonable approximation of the real end-to-end traffic observed in a LAN.

In all our experiments, we generate the traffic by drawing the length of the ON and OFF periods
from a Pareto distribution with the power factor of 1.2. During the ON period a source sends packets
with sizes between 100 and 1000 bytes. The time to send a packet of minimum size during the ON
period is assumed to be the time unit in computing the length of the ON and OFF intervals.

Due to the high overhead incurred by a packet-level simulator such as ours, we limit the link
capacities to 10 Mbps and the simulation time to 200 sec. We set the average interval between
routing updates to 5 sec for the small topologies used in the first three experiments, and to 3 sec for
the large topology used in the last experiment. In all experiments, the traffic starts at time t = 20
sec. The choice of this time guarantees that the routing algorithm finds at least one path between
any two nodes by time t. In order to eliminate the transient behavior, we start our measurements at
time t = 50 sec.

6.4.2 Experiment 1: Local Fairness and Service Differentiation

This experiment shows that if all users send their traffic along the same congested path, they get
service in proportion to their token rate, as long as there is enough demand. Consider the topology
in Figure 6.4(a), where users 51, 52, and 53 send traffic to D\. Figure 6.4(b) shows the user overall
throughputs over the entire simulation under BASE. As it can be seen, 51 gets significantly more
than the other two. In fact, if the traffic from all sources were continuously backlogged, we expect
that 51 will get half of the congested links 5 and 6, while 52 and 53 split the other half. This
is because even though each user sends at an average rate higher than 10 Mbs, the queues are not
continuously backlogged. This is due to the bursty nature of the traffic and due to the limited buffer
space at each router.

98

(a)

8.74 8.74

(
1

a

best-effort

in-profile

out-of profile

3.52
3.25 3.21 3.32 3.32 3.35

3
" j

..1

4.89
m

4.9(4.96 ■
5.22

SI S2 S3 S4

BASE

SI S2 S3 S4

STATIC

SI S2 S3 S4

DYNAMIC-2

(b)

Figure 6.5: (a) Topology used in the second experiment. 51, 52, 53, and 54 send all their traffic to D\,
D2, and D2>, respectively, (b) The throughputs of all users under BASE, STATIC, and DYNAMIC-2.

Next, we run the same simulation for the STATIC scheme. To each user we assign the same
token rate, and to each link we associate the same fixed cost. Figure 6.4(b) shows the user overall
and in-profile throughputs. Compared to BASE, the overall throughputs are more evenly distributed.
However, the user 51 still gets slightly better service, i.e., its in-profile throughput is 3.12 Mbps,
while the in-profile throughput of 52/53 is 2.75 Mbps. To see why, recall from Eq. (6.1) that link
cost accurately reflects the level of congestion on that link. Consequently, in this case links 5 and 6
will have the highest cost, followed by link 4, and then the other three links. Thus, 52 and 53 have
to "pay" more than 51 per marked bit. Since all users have the same token rates, this translates into
lower overall throughputs for 52 and 53, respectively.

To illustrate the relationship between the user's token rate and its performance, we double the
token rate of 52. Figure 6.4(c) shows the overall and in-profile throughputs of each user. In terms of
in-profile traffic, user 52 gets roughly twice the throughout of 53 (i.e., 4.27 Mbps vs. 2.18 Mbps).

Finally, we note that there were no marked packets dropped in any of the above simulations. For
comparison, more than 60% of the out-of profile traffic was dropped.

6.4.3 Experiment 2: User Fairness and Load Balancing

In this section we show how dynamic routing and load balancing help to improve user level fairness
and achieve better resource utilization. Consider the topology in Figure 6.5 where users 51, 52, 53
and 54 send traffic to each of the users Dl, D2 and D3, respectively. Again the fixed costs of all
links are equal, and all users are assigned the same token rate.

Figure 6.5(b) shows the overall and in-profile throughputs of 51, 52, 53 and 54 under BASE,
STATIC and DYNAMIC-2, respectively. When BASE and STATIC are used, each user always sends
along the shortest paths. This results in 51, 52 and 53 sharing link 1, while 54 alone uses link 3. As
a consequence 54 receives significantly better service than the other three users. Since it implements
the same routing algorithm, STATIC does not improve the overall throughputs. However, compared

99

©~-Q
link 4

link I 5—© i

(S^D link .1

(a)

link:

CHS

7.86 7.98

I 6.95

best-effort

D in-profile

I out-of profile
7.0.1

9.14

7.20 ■

I I
nest-effort

[3 in-profile

I om-of profile

U-' <-> n v. c
g < y 2- U- "?

<
2

(b)
c

(c)

Figure 6.6: (a) Topology used in the third experiment. Mean throughputs when (b) load is balanced, and (c)
when it is unbalanced, i.e. S3 and S4 are inactive.

with BASE, STATIC guarantees that in-profile packets are delivered with very high probability
(again, in this experiment, no marked packets were dropped). On the other hand, when DYNAMIC-
2 is used, each user receives almost the same service. This is because users SI, S2 and S3 can
now use both routes to send their traffic, which allows them to compete with user S4 for link 3.
User S4 still maintains a slight advantage, but now the difference between its overall throughput
and the overall throughputs of the other users is less than 7%. In the case of the in-profile traffic
this difference is about 5%. As in the previous experiment, the reason for this difference is because
when competing with 54, the other users have to pay, besides link 3, for link 2 as well.

Thus, by taking advantage of the alternate routes, our scheme is able to achieve fairness in a
more general setting. At the same time it is worth noting that the overall throughput also increases
by almost 7%. However, in this case, this is mainly due to the bursty nature of S4's traffic which
cannot use the entire capacity of link 3 when it is the only one using it, rather than load balancing.

6.4.4 Experiment 3: Load Distribution and Load Balancing

This experiment shows how the load distribution affects the effectiveness of our load balancing
scheme. For this purpose, consider the topology in Figure 6.6(a). In the first simulation we gener-
ate flows that have the source and the destination uniformly distributed among users. Figure 6.6(b)
shows the means of the overall throughputs under BASE, STATIC, and DYNAMIC-2, respectively.7

Due to the uniformity of the traffic pattern, in this case BASE performs very well. Under STATIC
we get slightly larger overall throughput, mainly due to our congestion control scheme, which ad-
mits a marked packet only if there is a high probability that it will be delivered. However, under
DYNAMIC-2 the performance degrades. This is because there are times when our probabilistic
routing algorithm selects longer routes, which leads to inefficient resource utilization.

7We have also computed standard deviations for each case: the largest standard deviation was 0.342 for the overall
throughput under STATIC scheme, and 0.4 for the in-profile throughput under DYNAMIC-2.

100

(c)

Figure 6.7: Topology similar to the T3 topology of the NSFNET backbone network containing the IBM
NSS nodes.

Next, we consider an unbalanced load by making users 53 and 54 inactive. Figure 6.6(c) shows
throughput means under BASE, STATIC, and DYNAMIC-2, respectively. As it can be noticed,
using DYNAMIC-2 increases the mean by 30%. This is because under BASE and STATIC schemes
the entire traffic between 51, 52 and 55, 56 is routed through links 3 and 4 only. On the other hand,
DYNAMIC-2 takes advantage of the alternate route through links 1 and 2.

Finally, in another simulation not shown here we considered the scenario in which 55, 56, 57,
and 58 send their entire traffic to 53 and 54, respectively. In this case DYNAMIC-2 outperforms
STATIC and BASE by almost two times in terms of in-profile and overall throughputs. This is again
because BASE and STATIC exclusively use links 3 and 2, while DYNAMIC-2 is able to use all four
links.

6.4.5 Experiment 4: Large Scale Example

In this section we consider a larger topology that closely resembles the T3 topology of the NSFNET
backbone containing the IBM NSS nodes (see Figure 6.7). The major difference is that in order to
limit the simulation time we assume 10 Mbps links, instead of 45 Mbps. We consider the following
three scenarios.

101

,. j,

7.87 8.If

I 7.8? ■ 7.67 ■ 1 6.50
7.2f

7.79

I 7.43 ■ 6-'" 6.09

bcst-cfforl

G in-profilc

C/j

o c

1
5.32 5.47 ■ ■ H out-of profile

c c n
u w
s s

u- U c, [u U n u. U ri
< < y y < 5 y y < < y y O

i- 2 2 ^ § §
•— b s s ö

bi 2 s K < < « < <
z z z z 2: z
;* >- **" i*" >■ >■
D o Q Q ^s D

(a) (b) (c)

Figure 6.8: The throughputs when the load is balanced (Figure 6.7(a)), (b) unbalanced ((Figure 6.7(b)), and
(c) when the network is virtually partitioned (Figure 6.7(c)).

In the first scenario we assume that load is uniformly distributed, i.e., any two users communi-
cate with the same probability. Figure 6.8(a) shows the results for each scheme which are consistent
with the ones obtained in the previous experiment. Due to the congestion control which reduces the
number of dropped packets in the network, STATIC achieves higher throughput than BASE. On the
other hand, dynamic routing and load balancing are not effective in this case, since they tend to gen-
erate longer routes which leads to inefficient resource utilization. This is illustrated by the decrease
of the overall and the in-profile throughputs under DYNAMIC-2 and DYNAMIC-3, respectively.

In the second scenario we assume unbalanced load. More precisely, we consider 11 users (cov-
ered by the shaded area in Figure 6.7(b)) which are nine times more active than the others, i.e., they
send/receive nine times more traffic.8 Unlike the previous scenario, in terms of overall throughput,
DYNAMIC-2 outperforms STATIC by almost 8%, and BASE by almost 20% (see Figure 6.8(b)).
This is because DYNAMIC-2 is able to use some of the idle links from the un-shaded partition.
However, as shown by the results for DYNAMIC-3, as the number of alternate paths increases both
the overall and in-profile throughputs start to decrease.

In the final scenario we consider the partition of the network shown in Figure 6.7(c). For sim-
plicity, we assume that only users in the same partition communicate between them. This scenario
models a virtual private network (VPN) setting, where each partition corresponds to a VPN. Again,
DYNAMIC-2 performs best9 since it is able to make use of some links between partitions that
otherwise would remain idle.

Finally, we note that across all simulations presented in this section, the dropping rate for the
marked packets was never larger than 0.3%. At the same time the dropping rate for the unmarked
packets was over 40%.

8This might model the real situation where the east coast is more active than the west coast between 9 and 12 a.m.
EST.

9The mean of the user overall throughput under DYNAMIC-2 is 15% larger than under STATIC, and 18% larger than
under BASE.

102

6.4.6 Summary of Simulation Results

Although the experiments in this section are far from being exhaustive, we believe that they give a
reasonable image of how our scheme performs. First, our scheme is effective in providing service
differentiation at the user level. Specifically, the first two experiments show that users with simi-
lar communication patterns get service in proportion to their token rates. Second, at least for the
topologies and the traffic model considered in these experiments, our scheme ensures that marked
packets are delivered to the destination with high probability.

Consistent with other studies [68], these experiments show that performing dynamic routing
and load balancing make little sense when the load is already balanced. In fact, using dynamic
routing and load balancing can actually hurt, since, as noted above, this will generate longer routes
which may result in inefficient resource utilization. However, when the load is unbalanced, using
DYNAMIC-fc can significantly increase the utilization and achieve a higher degree of fairness.

Finally, we note that the in-profile dropping rate decreases as the the number of alternate paths
increases. For example in the last experiment in the first two scenarios the dropping rate is no larger
than 0.3% under STATIC and 0% under DYNAMIC-2 and DYNAMIC-3, respectively, while in the
last scenario the percentage decreases from 0.129% for STATIC, to 0.101% for DYNAMIC-2, and
to 0.054% for DYNAMIC-3.

6.5 Discussion

In this chapter, we have studied a differential service model, LIRA, in which, unlike the Assured
service [23, 24], the service profile is specified in terms of resource tokens instead of absolute
bandwidth. Since the exact bandwidth of marked bits that a customer can receive from such a
service is not known a priori, a natural question to ask is why such a service model is interesting?

There are several reasons. First, we believe that the apriori specification of an absolute amount
of bandwidth in the service profile, though desirable, is not essential. In particular, we believe that
the essential aspects that distinguish Diffserv from Intserv are the following: (a) the service profile
is used for traffic aggregates which are much coarser than per flow traffic, and (b) the service profile
is defined over a timescale larger than the duration of individual flows, i.e. service profile is rather
static. Notice that the degree of traffic aggregation directly relates to the spatial granularity of the
service profile. On the one hand, if each service profile is defined for only one destination, we
have the smallest degree of traffic aggregation. If there are N possible egress nodes for a user,
N independent service profiles need to be defined. Network provisioning is relatively easy as the
entire traffic matrix between all egress and ingress nodes is known. However, if a user has a rather
dynamic distribution of egress nodes for its traffic, i.e., the amount of traffic destined to each egress
node varies significantly, and the number of possible egress nodes is large, such a scheme will
significantly reduce the chance of statistical sharing. On the other hand, if each service profile is
defined for all egress nodes, we have the largest degree of traffic aggregation. Only one service
profile is needed for each user regardless of the number of possible egress nodes. In addition to a
smaller number of service profiles, such a service model also allows all the traffic from the same
user, regardless of its destination, to statistically share the same service profile. The flip side is that
it makes it difficult to provision network resources. Since the traffic matrix is not known apriori, the

103

best-case scenario is when the network traffic is evenly distributed, and the worst-case scenario is
when all traffic goes to the same egress router.

Therefore, it is very difficult, if not impossible, to design service profiles that (1) are static, (2)
support coarse spatial granularity, (3) are defined in terms of absolute bandwidth, and at the same
time achieve (4) high service assurance and (5) high resource utilization. Since we feel that (1), (2),
(4) and (5) are the most important for differential services, we decided to give up (3).

Fundamentally, we want a service profile that is static and path-independent. However, to
achieve high utilization, we need to explicitly address the fact that congestion is a local and dynamic
phenomenon. Our solution is to have two levels of differentiation: (a) the user or service-profile level
differentiation, which is based on resource token arrival rate that is static and path independent, and
(b) the packet level differentiation, which is a simple priority between marked and unmarked pack-
ets and weighted fair share among marked packets. By dynamically setting the cost of each marked
bit as a function of the congestion level of the path it traverses, we set up the linkage between the
static/path-independent and the dynamic/path-dependent components of the service model.

A second reason our service model may be acceptable is that users may care more about the
differential aspect of the service than the guaranteed bandwidth. For example, if user A pays twice
as much as user B, user A would expect to have roughly twice as much traffic delivered as user B
during congestion if they share same congested links. This is exactly what we accomplish in LIRA.

A third reason a fixed-resource-token-rate-variable-bandwidth service profile may be acceptable
is that the user traffic is usually bursty over multiple time-scales [27, 80, 118]. Thus, there is a
fundamental mismatch between an absolute bandwidth profile and the bursty nature of the traffic.

We do recognize the fact that it is desirable for both the user and the ISP to understand the
relationship between the user's resource token rate and its expected capacity. This can be achieved
by measuring the rate of marked bits given a fixed token rate. Both the user and the ISP can perform
this measurement. In fact, this suggests two possible scenarios in which LIRA can be used to provide
a differential service with an expected capacity defined in terms of absolute bandwidth. In the first
scenario, the service is not transparent. Initially, the ISP will provide the user with the following
relationship

expected.capacity = /(token_rate, traffic_mix) (6.7)

based on its own prior measurement. The user will measure the expected capacity and then make
adjustments by asking for an increase or a decrease in its resource token rate. In the second scenario,
the service is transparent. Both the initial setting and the subsequent adjustments of the service
profile in terms of token rate will be made by the ISP only.

Therefore, one way of thinking about our scheme is that it provides a flexible and efficient
framework for implementing a variety of Assured Services. In addition, the dynamic link cost
information and the statistics of the resource token bucket history provide good feedback both for
individual applications to perform runtime adaptation, and for the user or the ISP to do proper
accounting and provisioning.

104

6.6 Related Work

The LIRA service is highly influenced by Clark and Wroclawski's Assured service proposal [23,
24]. The key difference is that we define service profiles in units of resource tokens rather than
absolute bandwidth. In addition, we propose a resource accounting scheme and an integrated set of
algorithms to implement our service model.

Another related proposal is the User-Share Differentiation (USD) [116] scheme, which does not
assume absolute bandwidth profiles. In fact, with USD, a user is assigned a share rather than a
token-bucket-based service profile. For each congested link in the network traversed by the user's
traffic, the user shares the bandwidth with other users in proportion to its share. The service provided
is equivalent to one in which each link in a network implements a weighted fair queueing scheduler
where the weight is the user's share. With USD, there is little correlation between the share of a user
and the aggregate throughput it will receive. For example, two users that are assigned the same share
can see drastically different aggregate throughputs. A user that has traffic for many destinations
(thus traverse many different paths) can potentially receive much higher aggregate throughput than
a user that has traffic for only a few destinations.

Waldspurger and Weihl have proposed a framework for resource management based on lottery
tickets [113,114]. Each client is assigned a certain number of tickets which encapsulate its resource
rights. The number of tickets a user receives is similar to the user's income rate in LIRA. This
framework was shown to provide flexible management for various single resources, such as disk,
memory and CPU. However, they do not give any algorithm(s) to coordinate ticket allocation among
multiple resources.

To increase resource utilization, in this chapter we propose performing dynamic routing and load
balancing among the best k shortest paths between source and destination. In this context, one of the
first dynamic routing algorithms, which uses the link delay as metric, was the ARPANET shortest
path first [71]. Unfortunately, the sensitivity of this metric when the link utilization approaches
unity resulted to relatively poor performances. Various routing algorithms based on congestion
control information were proposed elsewhere [43,46]. The unique aspect of our algorithm is that it
combines dynamic routing, congestion control and load balancing. We also alleviate the problem of
system stability which plagued many of the previous dynamic routing algorithms by defining a more
robust cost function and probabilistically binding a flow to a route. We also note that our link cost
is similar to the one used by Ma et al. [68]. In particular, it can be shown that when all links have
the same capacity, our link cost is within a constant factor of the cost of shortest-dist(P, 1) algorithm
presented Ma et al. [68]. It is worth noting that shortest-dist(P, 1) performed the best among all the
algorithms studied there.

6.7 Summary

In this chapter we have proposed an Assured service model in which the service-profile is defined
in units of resource tokens rather than the absolute bandwidth, and an accounting scheme that dy-
namically determines the number of resource tokens charged for each in-profile packet. We have
presented a set of algorithms that efficiently implement the service model. In particular, we in-
troduced three techniques: (a) distributing path costs to all edge nodes by leveraging the existing

105

routing infrastructure; (b) binding a flow to a route (route-pinning); (c) multi-path routing and prob-
abilistic binding of flows to paths to achieve load balancing.

To implement route-pinning, which is arguably the most complex technique of the three, we
have used DPS. By using DPS, we have been able to efficiently implement the LIRA service model
in a SCORE network. We have presented simulation results to demonstrate the effectiveness of the
approach. To the best of our knowledge, this is the first complete scheme that explicitly addresses
the issue of large spatial granularities.

106

Chapter 7

Making SCORE more Robust and Scalable

While SCORE/DPS based solutions are much more scalable and, in the case of fail-stop failures,
more robust than their stateful counterparts, they are less scalable and robust than the stateless
solutions. The scalability of the SCORE architecture suffers from the fact that the network core
cannot transcend trust boundaries, such as the boundary between two competing Internet Service
Providers (ISPs). As a result, the high-speed routers on these boundaries must be stateful edge
routers. The lack of robustness is because the malfunctioning of a single edge or core router that
inserts erroneous state in the packet headers could severely impact the performance of an entire
SCORE network.

In this chapter, we discuss an extension to the SCORE architecture, called "verify-and-protect",
that overcomes these limitations. We achieve scalability by pushing the complexity all the way to
end-hosts, and therefore eliminate the distinction between core and edge routers. To address the
trust and robustness issues, all routers statistically verify that the incoming packets are correctly
marked, i.e., that they cany consistent state. This approach enables routers to discover and isolate
misbehaving end-hosts and routers. While this approach requires routers to maintain state for each
flow that is verified, in practice, this does not compromise the scalability of core routers as the
amount of state maintained by these routers is very small. In practice, as discussed in Section 7.3,
the number of flows that a router needs to verify simultaneously - flows for which the router has to
maintain state - is on the order of tens. We illustrate the "verify-and-protect" approach in the context
of Core-Stateless Fair Queueing (CSFQ), by developing tests to accurately identify misbehaving
nodes, and present simulation results to demonstrate the effectiveness of this approach.

The remainder of this chapter is organized as follows. The next section describes the failure
model assumed throughout this chapter. Section 7.2 presents the components of the "verify-and-
protect" approach, while Section 7.3 describes the details of the flow verification algorithm in the
case of CSFQ. Section 7.4 proposes a robust test to identify the misbehaving nodes. Finally, Sec-
tion 7.5 presents simulation results, while Section 7.6 summarizes our findings.

7.1 Failure Model

In this chapter, we assume a partial failure model in which a router or end-host misbehaves by
sending packets carrying inconsistent information. A packet is said to carry inconsistent information
(or state), if this information does not correctly reflect the flow behavior. In particular, with CSFQ,

107

flow 1 (rate = 5) EH EH EH \r- 1
flow2 (rate = 10)Q5]Q5lD5]EH nans] —|lD [] -^^
flow 3 (rate = 3) EH EH ^-

Figure 7.1: Three flows arriving at a CSFQ router: flow 1 is consistent, flow 2 is downward-inconsistent,
and flow 3 is upward-inconsistent.

a packet is said to cany inconsistent information if the difference between the estimated rate in its
header and the actual flow rate exceeds some predefined threshold (see Section 7.3.2 for details).
We use a range test, instead of an equality test, to account for the rate estimation inaccuracies due to
the delay jitter and the probabilistic dropping scheme employed by CSFQ. A node that changes the
DPS state earned by a packet from consistent into inconsistent is said to misbehave. In this chapter,
we use the term of node for both a router and an end-host.

A misbehaving node can affect a subset or all flows that traverse the node. As an example,
an end-host or an egress router of an ISP may intentionally modify state information earned by
the packets of a subset of flows hoping that these flows will get a better treatment while traversing
a down-stream ISP. In contrast, a router that experiences a malfunction may affect oil flows by
randomly dropping their packets.

A flow whose packets carry inconsistent information is called inconsistent; otherwise it is called
consistent. We differentiate between two types of inconsistent flows. If the packets of a flow carry
a rate smaller than the actual flow rate, we say that the flow is downward-inconsistent. Similarly,
if the packets carry a rate that is larger than the actual flow rate we say that the flow is upward-
inconsistent. Figure 7.1 shows an example involving three flows arriving at a CSFQ core router:
flow 1 is consistent, flow 2 is downward-inconsistent, as its arrival rate is 10, but its packets cany
an estimated rate of only 5, and flow 3 is upward-inconsistent since it has an arrival rate of 3, but
its packets cany an estimated rate of 5. As we will show in the next section, of the two types of
inconsistent flows, the downward-inconsistent ones are more dangerous as they can steal bandwidth
from the consistent flows. In contrast, upward-inconsistent flows can only hurt themselves.

In summary, we assume only node failures that result in forwarding packets with inconsistent
state. We do not consider general failures such as a node writing a packet IP header, e.g., spoofing
the IP destination or/and source addresses, or dropping all packets of a flow.

7.1.1 Example

In this section, we first illustrate the impact of an inconsistent flow on other consistent flows that
share the same link. In particular, we show that a downward-inconsistent flow may deny the service
to consistent flows. Then we illustrate the impact that a misbehaving router can have on the traffic
in the entire domain.

Consider a basic scenario in which three flows with rates of 8, 6, and 2 Mbps, respectively, share
a 10 Mbps link. According to Eq. 4.1, the fair rate in this case is 4 Mbps1. As a result, the first two
flows get 4 Mbps each, while flow 3 gets exactly 2 Mbps.

'This is obtained by solving the equation: min(a, 8) + min(a, 6) + min(a, 2) = 10.

108

8 0TJ E2H 03] HI

;HD <^=>

CO
g

CO

1
1

U
6

BTI consistent flow ED inconsistent flow

(a)

/=1
8 HS m mf^mmmmi m
6Äßl Jk|l ,fc$l .fel$l £|] £$ HS
2jba H2l

;>§^ r
v

HS EQ] 010IHIHI0IHI0I8

(b)

Figure 7.2: (a) A CSFQ core router cannot differentiate between an inconsistent flow with an arrival rate of
8, whose packets carry an estimated rate of 1, and 8 consistent flows, each having an arrival rate of 1. (b)
Since CSFQ assumes implicitly that all flows are consistent it will allocate a rate of 8 to the inconsistent flow,
and a rate of 1 to consistent flows. The crosses indicate dropped packets.

Next, assume that the first flow is downward-inconsistent. In particular, its packets carry an
estimated rate of 1 Mbps, instead of 8 Mbps. It is easy to see then that such a scenario will break
CSFQ. Intuitively, this is because a core router cannot differentiate - based only on the information
carried by the packets - between the case of an 8 Mbps inconsistent flow, and the case of 8 consistent
flows sending at 1 Mbps each (see Figure 7.2(a)). In fact, CSFQ will assume by default that the
information carried by all packets is consistent, and, as a result, will compute a fair rate of 1 Mbps
(see Figure 7.2(b)).2 Thus, while the other two flows get 1 Mbps each, the inconsistent flow will get
8 Mbps!

Worse yet, a misbehaving router can affect not only the traffic it forwards, but also the traffic
of other down-stream routers. Consider the example in Figure 7.3(a) in which the black router on
the path of flow 1 misbehaves by under-estimating the rate of flow 1. As illustrated by the previous
example, this will cause down-stream routers to unfairly allocate more bandwidth to flow 1, hurting
in this way the consistent traffic. In this example, flow 1 will affect both flows 2 and 3. In contrast,
in a stateful network, in which each router implements Fair Queueing, a misbehaving router can
hurt only the flows it forwards. In the scenario shown in Figure 7.3(b), the misbehaving router will
affect only flow 1, while the other two flows will not be affected.

7.2 The "Verify-and-Protect" Approach

To address the robustness and improve the scalability of the SCORE architecture we consider a
"verify-and-protect" extension of this architecture. We achieve scalability by pushing the complex-
ity all the way to end-hosts and eliminate the concept of the core-edge distinction. To address the

2This is obtained by solving the equation: min(2, a) + min(6, a) + 8 x min(l, a) = 10.

109

flow 2

flow 1

flow 2

flow 1

flow 3 O flow 3

H misbehaving node consistent flows
= = inconsistent flows

misbehaving node — consistent flow

— inconsistent flow

(a) (b)

Figure 7.3: (a) An example illustrating how a misbehaving router (represented by the black box) can affect
the down-stream consistent traffic in the case of CSFQ. In particular, the misbehaving router will affect flow
1, which in turn affects flows 2 and 3 as they share the same down-stream links with flow 1. (b) In the case
of Fair Queueing the misbehaving router will affect only flow 1; the other two flows are not affected.

trust and robustness issues, all routers statistically verify that the incoming packets are correctly
marked. This approach enables routers to discover and isolate misbehaving end-hosts and routers.

The "verify-and-protect" extension consists of three components: (1) identification of the mis-
behaving nodes, (2) protection of the consistent traffic against the inconsistent traffic forwarded by
the misbehaving node, and (3) recovery from the protection mode if the misbehaving node heals.
Next, we briefly discuss these components in more detail.

7.2.1 Node Identification

Node identification builds on the fact that with DPS a core router can easily verify whether a flow is
inconsistent or not. This can be simply done by having a router (1) monitor a flow, (2) re-construct
its state, and then (3) check whether the reconstructed state matches the state earned by the flows'
packets. We call this procedure flow verification. In the case of CSFQ, flow verification consists
of re-estimating a flow's rate and then comparing it against the estimated rate earned by the flow's
packets. If the two rates are within some predefined distance from each other (see Section 7.3.2) we
say that the flow is consistent; otherwise, we say that the flow is inconsistent.

Since in our case a misbehaving node is defined as a node which forwards packets carrying
inconsistent state, a simple identification algorithm would be to have each router monitor the in-
coming flows. Then, if the router detects an inconsistent flow, it will conclude that the up-stream
node misbehaves.3

The drawback of this approach is that it requires core routers to monitor each incoming flow,
which will compromise the scalability of our architecture. To get around this problem, we limit the
number of flows that are monitored to a small sub-set of all arriving flows. While this approach does

For simplicity, here we assume that we can decide that a node misbehaves based on a single inconsistent flow.
However, as we will show in Section 7.3.2, in the case of CSFQ we have to perform more than one flow tests to accurately
identify a misbehaving node.

110

not guarantee that every inconsistent flow is identified, it is still effective in detecting misbehaving
nodes. This is because, at the limit, identifying one inconsistent flow is enough to conclude that an
up-stream node misbehaves. However, note that in this case we can no longer be certain that the
up-stream neighbor misbehaves; it can be the case that another up-stream node misbehaves but the
intermediate nodes fail to identify it.

7.2.2 Protection

Once a router identifies a misbehaving flow, the next step is to protect the consistent traffic against
this flow. One approach would be to penalize the inconsistent flows only. The problem with this ap-
proach is that it is necessary to maintain state for all inconsistent flows. If the number of inconsistent
flows is large, this approach will compromise the scalability of the core routers.

An second approach would be to penalize all flows which arrive from a misbehaving node. In
particular, once a router concludes that an up-stream node misbehaves, it penalizes all flows that are
coming from that node, no matter whether they are inconsistent or not. While this approach may
seem overly conservative, it is consistent with our failure model, which considers only node, not
flow, failure.

Finally, a third approach would be to announce the failure at a higher administrative level —
for example, to the network administrator — that can then take the appropriate action. At the limit,
the network administrator can simply shut-down the misbehaving router and reroute the traffic. A
variation of this scheme would be to design a routing protocol that automatically reroutes the traffic
when a misbehaving router is identified.

In the example studied in this chapter, i.e., in the case of CSFQ, we assume the second approach
(see Section 7.5).

7.2.3 Recovery

In many cases the failure of a node can be transient, i.e., after forwarding misbehaving traffic for a
certain time, a node may stop doing so. In this case, the down-stream node should detect this, and
stop punishing the traffic arriving from that node. Again, this can be easily implemented by using
flow verification. If a router does not detect any ill-behaved flow for a predefined period of time, it
can decide then that the up-stream node no longer misbehaves, and stop punishing its flows.

7.3 Flow Verification

At the basis of the "verify-and-protect" approach lies the ability to identify misbehaving nodes. In
turn, this builds on the ability to perform flow verification to detect whether a flow is consistent or
not. In this section we describe the flow verification algorithm, and propose a test to check for flow's
consistency in the case of CSFQ.

We assume that a flow is uniquely identified by its source and destination IP addresses. This
makes packet classification easy to implement at very high speeds. For most practical purposes, we
can use a simple hash table with the hash keys computed over the source and destination address
fields in the packet's IP header.

Ill

upon packet p arrival:

//ifflow to which p belong is not monitored,

//and monitoring list is not full, start to monitor it

f = get-flow _filter(7>);

if (/ ^ monitoringJist)

if (size(monitoringJist) < M)

//start to monitorf

insert(monitoring_list. /);

init(/.rflifi);

f .start Jime. = f .crtJimc;

else // update f state

update(/'..state, p);

if (f.crtJime — j'.startJAme > Twnn)

flow _idJest(/.state, p. state);

delete(monitoring_list. /);

Figure 7.4: The pseudocode of the flow verification algorithm.

We consider a router architecture in which the monitoring function is implemented at the input

ports. Performing flow monitoring at inputs, rather than outputs, allows us to detect inconsistent

flows as soon as possible, and therefore limit the impact that these flows might have on the consistent

flows traversing the router. Without loss of generality we assume an on-line verification algorithm.

The pseudocode of the algorithm is shown in Figure 7.4. We assume that an input can monitor

up to M flows simultaneously. Upon a packet arrival, we first check whether the flow it belongs

to is already monitored. If not, and if less than M flows are monitored, we add the flow to the

monitoring list. A flow is monitored for an interval of length Tmon. At the end of this interval the

router computes an estimate of the flow rate and compares it against the rate carried by the flow's

packets. Based on this comparison, the router decides whether the flow is consistent or not. We call

this test the flow identification test.

A flow that fails this test is classified as inconsistent. In an ideal fluid flow system a flow would

be classified as consistent if the rate estimated at the end of the monitoring interval is equal to

the rate carried by the flow's packets. Unfortunately, in a real system such a simple test will fail

due to inaccuracies introduced by (1) the rate estimation algorithm, (2) the delay jitter, and (3) the

probabilistic buffer management scheme employed by CSFQ. In Section 7.3.2 we present a flow

identification test that is robust in the presence of these inaccuracies.

One important question is whether the need to maintain state for each flow that is verified does

not compromise the scalability of our approach. We answer this question next. Let Tmcm be the

average time it takes a router to verify a flow (see Table 7.1). Since according to the algorithm

in Figure 7.4, a new flow (to be verified) is selected by choosing a random packet, and a router

can verify up to M flows simultaneously, the expected time to select an inconsistent flow is about

112

Notation Comments
M maximum number of flows simultaneously monitored at an input port
T ■*■ m on monitoring interval

■L in c expected time to identify a flow as inconsistent

71 ine expected number of tests to classify a flow as inconsistent

"'Ot' over-flow'factor - ratio between labels carried by flow's packets at the
entrance of the network and the fair rate on the upstream bottleneck link

fCiiic inconsistency factor - ratio between flow's
arrival rate and labels carried by flow's packets

m number of packets sent during Tmon at the fair rate
(assuming fixed packet sizes)

Sc event that a tested flow is consistent

&inc event that a tested flow is inconsistent; Pr(S,„c) + Pr(Sc) = 1

cc event that a tested flow is classified as consistent

^inc event that a tested flow is classified as inconsistent

Pc—inc = ^\^inc \ ^c) probability that a consistent flow is misidentified

Pinc—inc ~ ^{^inc \ ^>inc) probability that an inconsistent flow is identified

Pa probability that a selected flow is active long enough to be tested

Pine = PoX^y^inc) probability that a selected flow is classified as inconsistent

Pid — *^\binc \ ^inc) probability to identify an inconsistent flow, i.e.,
probability that a flow classified as inconsistent is indeed inconsistent

Jinc fraction of inconsistent traffic

Pr(Smc) probability to select an inconsistent flow; we assume Pr(5,„c) = fine

Table 7.1: Notations used throughout this chapter. For simplicity, the notations do not include the time
argument t.

113

Tmon I {Mfinc), where finr represents the fraction of the inconsistent traffic (see Table 7.1). Thus,
the expected time to eventually catch an inconsistent flow is Tmon/(Mfinr) + TW01I. As a result,
it makes little sense to choose M much larger than l//,„r, as this will only marginally reduce the
time to catch a flow. In fact, if we choose M ~ l//„;r, the expected time to eventually catch an
inconsistent flow is within a factor of two of the optimal value Tm(m. Next, it is important to note
that in practice we can ignore the inconsistent traffic, when /,-,„. is small. Indeed, in the worst case,
ignoring the inconsistent traffic is equivalent to "losing" only a fraction fnir of the link capacity to
the inconsistent traffic. For example, if /,;„,. = 1%, even if we ignore the inconsistent traffic, the
consistent traffic will still receive about 99% of the link capacity. Given the various approximations
in our algorithms, ignoring the inconsistent traffic when finc is on the order of a few percent is
acceptable in practice. As a result, we expect that the number of flows that are simultaneously
monitored, M, to be on the order of tens. Note that M does not depend on the number of flows that
traverse a router, a number that can be much larger, i.e., on the order of hundred of thousands or
even millions.

7.3.1 Bufferless Packet System

To facilitate the discussion of the flow identification test, we consider a simplified buffer-less packet
system, and ignore the inaccuracies due to the rate estimation algorithm. For simplicity, assume that
each source sends constant-bit rate traffic, and that all packets have the same length. We consider
only end-host and/or router misbehaviors that result in having all packets of a flow carry a label that
is kinc times smaller than the actual flow rate, where ku,r ^ 1. Thus, we assume that kinr, also
called inconsistency factor, does not change4 during the life of a flow. In Figure 7.1, flow 2 has
kinc = 2, while flow 3 has A;777r = 3/5.

We consider a congested link between two routers TVj and N2, and denote it by (Ni:N2). We
assume that Nx forwards traffic to N2, and that N2 monitors it. Let a be the fair rate of (N{:N2).
Then, with each flow that arrives at JV] and which is forwarded to N2 along (Nj :N2), we associate
an overflow factor, denoted kov, that represents the ratio between the labels earned by the flow's
packets and the fair rate a along (N] :N2). For example, in Figure 7.1 each flow has knv = 5/3.

7.3.2 Flow Identification Test

In this section we present the flow identification test for CSFQ in the bufferless model. First, we
show why designing such a test is difficult. In particular, we demonstrate that the probabilistic
dropping scheme employed by CSFQ can significantly affect the accuracy of the test. Then we give
three desirable goals for the identification test, and discuss the trade-offs to achieve these goals.

Our flow identification test makes the decision based on the relative discrepancy between the
rate of the flow estimated by the router, denoted r, and the labels carried by the flow's packets,
denoted r. More precisely, the relative discrepancy is defined as

,. r — f
dlSrcl = —3-- (7.1)

The reason for this assumption is that a constant value of kinc maximizes the excess service received by an inconsis-
tent flow without increasing the probability of the flow to be caught. We show this in Section 7.4.1.

114

■D
D.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

k__ov = 1.05
k_ov=1.1
k_ov = 1.5

k_ov = 2
k_ov = 4

k ov = 16

-1 -0.5 0 0.5 1
Relative Discrepancy

1.5

Figure 7.5: The probability density function (p.d.f.) of the relative discrepancy of estimating the flow rate
for different values of /,„,.

In an idealized fluid flow system the flow identification test needs only to see whether the relative
discrepancy is zero or not. Unfortunately, even in our simplified buffer-less model this test is not
good enough, primarily due to the inaccuracies introduced by the CSFQ probabilistic dropping
scheme. Even if a flow is consistent and it traverses only well-behaved nodes, it can still end-up
with a non-zero discrepancy. To illustrate this point consider a consistent flow with the overflow
factor kov > 1 that arrives at N\. Let r be the arrival rate of the flow and let a be the fair rate of
(N\:N2). Note that kov = r/a. Assume that exactly n packets of the flow arrive at iVi during a
monitoring interval Tmon, and the packet dropping probability is independently distributed. Then,
the probability that N\ will forward exactly x packets during Tmon is:

PfwdW \px(l-p)n-x = (7.2)

where p = a/r = l/kov represents the probability to forward a packet.
Next, assume that ./V2 monitors this flow. Since we ignore the delay jitter, the probability that

iV2 receives exactly x packets during Tmon is exactly the probability that Ni will forward x packets
during Tmon, i.e., Pfwd{n; x). As a result, N2 estimates the flow rate as r = xl/Tmon with probabil-
ity pfwd(n; x), where I is the packet length. Let m denote the number of packets that are forwarded
at the fair rate a, i.e., m = aTmon/l. The relative discrepancy of the flow measured by A?2 during
Tmon is then:

UXSrpl —
r — r r — a x — m

a m
(7.3)

with the probability Pfwd(n; x).

115

Figure 7.5 depicts the probability density function (p.d.f.) of disrr\ for m = 10 and different
values of knv. Thus, even if the flow is consistent, its relative discrepancy as measured by N2 can
be significant. This suggests a range based test to reduce the probability of false positives, i.e, the
probability a consistent flow will be classified as being inconsistent. In particular, we propose the
following flow identification test:

Flow Identification Test (CSFQ) Define two thresholds: Hi < 0, and H„ > 0, respectively. Then
we say that a flow is inconsistent if its relative discrepancy (disr(,[) is either smaller than Hi, or
larger than Hu.

As shown in Figure 7.5, the overflow factor (/,:<„.) has a significant impact on the flow's relative
discrepancy (disr(,t). The higher the overflow factor of a flow is (i.e., the more aggressive a flow
is), the more spread out its relative discrepancy is. A spread out relative discrepancy makes it more
difficult to accurately identify an inconsistent flow. Assume H„ = 0.5, that is, a flow will be classi-
fied as inconsistent whenever the measured relative discrepancy (di.srrl) exceeds 0.5. As shown in
Figure 7.5, in this case, the probability a consistent flow will be misidentified, increases significantly
with kov. If kov < 1.05, this probability is virtually 0, while if A;or = 16, this probability is about
0.03, which in practice can be unacceptable. Note that while we can decrease this probability by
increasing Hu, such a simple solution has a major drawback: a large Hu will allow flows with a
larger inconsistency factor, i.e., with A;mr < Hu + 1, to go by undetected.

To simplify the problem of choosing Hv, we assume that the overflow factor of a consistent
flow has an upper bound. This assumption is motivated by the observation that consistent flows are
likely to react to congestion, and therefore their overflow factor will be small. Indeed, unless a flow
is malicious, it makes little sense for the source to send at a rate higher than the available rate on the
bottleneck link. As a result, we expect that kov to be slightly larger than 1 in the case of a consistent
flow. For this reason, in the remaining of this chapter we assume that kmn:r < 1.3. The value of
1.3 is chosen somewhat arbitrary to coincide to the value used in [101] to differentiate between
well-behaved and malicious (overly aggressive) flows. Thus, if a consistent flow is too aggressive,
i.e., its overflow factor kov > 1.3, it will run a high risk of being classified as inconsistent. However,
we believe that this is the right tradeoff, since it will provide an additional incentive to end-hosts to
implement flow congestion control.

7.3.3 Setting threshold Hv

The main question that remains to be answered is how to set up thresholds Hu and H/. In the
remainder of this section we give some guidelines and illustrate the trade-offs in choosing Hu.
Since choosing Hi faces similar trade-offs, we do not discuss this here.

Setting Hu is difficult because the flow identification test has to meet several conflicting goals:

1. robustness - maximize the probability that a flow identified as inconsistent is indeed inconsis-
tent. We denote this probability by p^.

2. sensitivity - minimize the inconsistency factor (kinr) for which a flow is still caught.

3. responsiveness - minimize the expected time it takes to classify a flow as inconsistent. As a
metric, we consider the expected number of tests it takes to classify a flow as inconsistent.
We denote this number by rnnc.

116

In the remainder of this section, we assume that router iV"i misbehaves by forwarding a constant
fraction of inconsistent traffic /jnc to N2. The reason we assume that finc is constant is because,
as we will show in Section 7.4.1, this represents the worst case scenario for our flow identification
test. In particular, if a malicious router wants to maximize the excess bandwidth received by its
inconsistent traffic before being caught, then it has to send inconsistent traffic at a constant fraction
of its total traffic. Further, we assume that all consistent flows have kov = 1.3, and all inconsistent
flows have kov < 1, i.e., no packet of an inconsistent flow is ever dropped by Ni. As a result the
relative discrepancy of an inconsistent flow will be exactly kinc. This means that our test will not
be able to catch an inconsistent flow with kinc < Hu + 1. Again, this choice of kov represents the
worse-case scenario. It can be shown that decreasing the kov of consistent flows and/or increasing
the kov of inconsistent flows will only improve the test robustness, sensitivity, and responsiveness.

Next, we derive the two parameters that characterize the robustness and responsiveness: pid,
and riinc. By using Bayes's formula and the notations in Table 7.1 we have

Pid = Pr{Sinc\Cinc) (7.4)

 *T\dinc)rT\^inc\&inc)

Pr(#„c)Pr(Cinc|Sinc) + Pr(Sc)Pr(Cinc|Sc)
 Jinc X Pinc—inc

Jinc •* Pinc—inc i {i- Jinc) * Pc—inc

In addition, the expected number of flows that are tested before a flow will be classified as
inconsistent, riinc, is

l^inc ~ / ,, H-l Pine) Pine = > \'-->)
i>\ Pinc

where pinc is the probability that ä selected flow will be classified as inconsistent. With the notations
from Table 7.1, and using simple probability manipulations, we have

Pinc = PaPr(Cinc). (7.6)

= PaiMCinc n sinc) + Pr(cinc n sc))

= pa(Pr(Smc)Pr(Cinc | 5mc) + Pr(5c)Pr(Cinc | Sc))
== Pa ^ {Jinc x Pinc—inc > (1 — Jinc) x Pc—inc)

Finally, by combining Eqs. (7.5) and (7.6), we obtain

Tlin.r. —
Pa X {Jinc x Pinc—inc > {*■ Jinc) x Pc—inc)

(7.7)

As illustrated by Eqs. (7.4) and (7.7), the fraction of the inconsistent traffic, finc, has a critical
impact on both pa and mnc. The smaller finc is, the smaller pid is, and the larger riinc is. The
reason riinc increases when /jnc decreases is because in any valid flow identification test we have
Pinc-inc > Pc-inc, i-e., the probability an inconsistent flow will be identified is always larger than
the probability a consistent flow will be misidentified. In the remainder of this chapter, we choose a

117

0.8

0.6

0.4

0.2 l;:

k inc = 1.05
1<Jnc = 1.1

kjnc = 1.15
k_inc= 1.2

kjnc = 1.25
kjnc= 1.3

1000

100

kjnc = 1.05
.' k_inc= 1.1

' kjnc = 1.15
kjnc = 1.2

kjnc = 1.25
kjnc = 1.3

0.05 0.1 0.15 0.2
H_u

0.25 0.3 0.35 0.4

(a) (b)

Figure 7.6: (a) The probability to identify an inconsistent flow, pjlh and (b) the expected number of tests it
takes to classify a flow as inconsistent. //,„,. as functions of H„. (The values of nilir for kinr < 1.25 and
H„ = 0.3 are not plotted as they are larger than lf)':.) All inconsistent flows have /,„,. = 1. /,„,. = 0.1. and
m = 10.

somewhat arbitrary f,nr = 0.1. If//,„• < 0.1, we simply ignore the impact of the inconsistent traffic
on the consistent traffic. This decision is motivated by the fact that the inconsistent traffic can "steal"
at most a fraction, fillr, of the link capacity. In the worst case, this leads to a 10% degradation in the
bandwidth received by a consistent flow, which we consider to be acceptable. However, it should be
noted that there is nothing special about this value of /,„,.. The reason for which we use a specific
value for finc is to make the procedure of choosing H„ more concrete.

Without loss of generality, we assume p„ = 1, i.e., once a flow is selected, it remains active for
at least Tm„„. Note that if pa < 1, this will simply result in scaling up iiinr by l/p„. Probabilities
Pinc-inc and Pr-^r are computed based on the p.d.f. of the relative discrepancy. Figure 7.6(a) plots
then the probability to identify an inconsistent flow, pld, while Figure 7.6(b) plots the expected num-
ber of tests to classify a flow as inconsistent, nillc. These plots illustrate the trade-offs in choosing
Hu. On one hand, the results in Figure 7.6(a) suggest that we have to choose H„ > 0.2; otherwise,
the probability to identify an inconsistent flow becomes smaller than 0.5. On the other hand, from
Figure 7.6(b), it follows that in order to make the test responsive we have to choose Hu < 0.2, as
ninc starts to increase hyper-exponentially for Hv > 0.2. To meet these restrictions, we choose
Hu = 0.2. Note that this choice gives us the ability to catch any inconsistent flow as long as its
inconsistency factor (kinc) is greater than 1.2.

7.3.4 Increasing Flow Identification Test's Robustness and Responsiveness

In the previous section we have assumed that m = 10, where m represents the number of packets
that can be sent during a monitoring interval at the fair rate by the upstream router JVi. In this
section we study the impact of m on the flow identification test performances.

Figures 7.7(a) and 7.7(b) plot the probability to identify an inconsistent flow, pid, and the ex-
pected number of tests it takes to classify a flow as inconsistent, n,r)f, versus A;,„r for various values
of m. As shown in Figure 7.7(a), increasing m can dramatically improve the test robustness. In

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
H_u

118

1

0.9

0.8

0.7

Pi 0.6
Q.

0.5

0.4

0.3

0.2

«m = 10 -+-
„m = 20 --«-

m = 30 »■••
m = 40 a
m = 50 - -■» -

35

30

25

20

15

10

m = 10
m = 20
m = 30
m = 40
m = 50

1.2 1.22 1.24 1.26 1.28
k_inc

1.3 1.32 1.34 1.2 1.22 1.24 1.26
k_inc

1.28 1.3

(a) (b)

Figure 7.7: (a) The probability to identify an inconsistent flow, pi(i, and (b) The expected number of tests to
classify a flow as inconsistent, n,nc, versus inconsistency factor, kinc, for various values of m.

addition, as shown in Figure 7.7(b), a large m makes the identification test more responsive for
values of kinc closer to Hu. However, it is important to note that, while a large m can signifi-
cantly reduce riinc, this does not necessary translate into a reduction of the time it takes to classify a
flow as inconsistent, i.e., Tjnc. In particular, if a router monitors M flows simultaneously, we have
Tine = Tmonriinc/M. Thus, an increase of m results directly into an increase of the time it takes to
test a flow for consistency, Tmon, an increase which can offset the decrease of riinc.

7.4 Identifying Misbehaving Nodes

Recall that our main goal is to detect misbehaving routers or/and hosts. In this section we present
and discuss such a test.

Like a flow identification test, ideally, a node identification test should be (1) robust, (2) re-
sponsive, and (3) sensitive. Unfortunately, it is very hard, if not impossible, to achieve these goals
simultaneously. This is to be expected as the node test is based on the flow identification test, and
therefore we are confronted with the same difficult trade-offs. Worse yet, the fact that the probability
of a node misbehaving can be very low makes the problem even more difficult.

Arguably, the simplest node identification test would be to decide that an upstream node mis-
behaves whenever a flow is classified as inconsistent. The key problem is that in a well engineered
system, in which the probability of a misbehaving node is very small, this test is not enough. As
an example, assume that we use m = 20, and that our goal is to detect inconsistent flows with
hnc > 1-25. Then, according to the results in Figure 7.7, we have pid = 0.92. Thus, there is a
0.08 probability of false positives. In addition, assume that the probability that the upstream node
Ni misbehaves is also 0.08. This basically means that whenever N2 classifies a flow as being
inconsistent there is only a 0.5 chance that this is because Ni misbehaves!

To alleviate this problem we propose a slightly more complex node identification test: instead
of using only one observation to decide whether a node misbehaves or not, we use multiple obser-
vations. In particular we have the following test

1.32

119

Node Identification (CSFQ): Test 1 An upstream node is assumed to misbehave if at least in
flows out of the last Nt tested flows were classified as inconsistent, where nt and Nt are predefined
constants.

Let P denote the probability of false positives, that is, the probability that every time we identify
an inconsistent flow during the last Nt tests we were wrong. Assuming that the results of the flow
identification tests are independently distributed, we have:

i—iii \ /

In the context of the previous example, assume that Nt = 5, and nt = 3. This yields P =
0.0002. Thus, in this case, the probability that we are wrong is much smaller than the probability
that the node is misbehaving. In consequence, if three out of the last five tested flows are classified
as inconsistent we can decide with high probability that the upstream node is indeed misbehaving.

A potential problem with the previous test is that a large threshold Hln will allow a misbehaving
node to inflict substantial damages without being caught. In particular, if a node inserts in the packet
headers a rate that is A;„,r times larger than the actual flow rate, where A:,„r — 1 < H„, the node will
get up to kinc — 1 times more capacity for free without being caught. For example, in our case, when
Hu = 1.2, the upstream node can get up to 20% extra bandwidth.

To filter out this attack we employ a second test. This test is based on the observation that in a
system in which all nodes are well-behaved the mean value of disrci is expected to be zero. In this
case, any significant deviation of disrci from zero is interpreted as being caused by a misbehaving
upstream node.

Node Identification (CSFQ): Test 2 An upstream node is assumed to misbehave if the mean value
ofdisrei does not fall within [—5, S].

7.4.1 General Properties

In this section we present two simple but important properties of our identification test. The first
property says that a misbehaving node can inflict maximum of damage when it sends inconsistent
traffic at a constant rate. In particular, the excess bandwidth received by the inconsistent traffic at
a downstream router, before being caught, is maximized when the rate of the inconsistent traffic is
constant. This property is important because it allows us to limit our study to the cases in which a
the fraction of the inconsistent traffic sent by a misbehaving node is constant. The second property
says that a misbehaving node cannot hurt the downstream consistent traffic in a "big" way for a long
time. In other words, the higher the rate of the inconsistent traffic is, the faster the misbehaving
node is caught. The two properties are given below.

Property 1 Let Rinc(t',t") denote the total volume of inconsistent traffic received by a router at
an input port during the interval [t', t"). Then, the probability that no inconsistent flow is identified
during [t1, t"), is minimized when the inconsistent traffic arrives at a fixed rate V{nc, where rinc =
Rinc(t',t")/(t"-t').

120

Proof. Let rinc(t) be the rate of the inconsistent traffic at time t, and let C denote the input link
capacity where the traffic arrives. Then, the fraction of the inconsistent traffic at time t is finc(t) >
finc{t)/C, where the equality occurs when the link is fully utilized. Let t\, t2, ...,tn be the time
instants when a new flow is selected to be monitored during the interval [£', t"). By using Eq. (7.6),
the probability that none of these flows will be identified as being inconsistent, denoted q, is

q = fl(l-pinc(ti)) (7.9)
i=l

Z_yi=l \Jinc\H) x Pine—inc. > (± ~ JincV'i)) x Pc
. n

< 1 -Pa-
ri

_ (1 „ Yd=\ fincjU) _ E"=l 1 finciU)
— I -1- — Pa Pinc—inc Pa yc—inc

' n n

Since a router randomly selects a flow to be monitored, we assume without loss of generality that
t\, t2, ■■;tn ai-e independently distributed within [t1, t"). By assuming that rinc(t) is a continuous
function over the interval [£', t"), we have

r-~c = Exp^2nc{tl))- (7-10)

In addition, since finc(t) > rinc(t)/C, for any t, the following inequality follows trivially

l~ii=\ JincV-i) . Lsj=\ rinc{tj) ^7 1 1 't
n — nC

By combining Eqs. (7.9), (7.11) and Eq. (7.10), using the fact that finc, pa, Pinc-inc and pc-inc are
independently distributed variables, and the fact that Pinc-inc > Pc-inc, we obtain

Exp(g) < (l - Exp(pa)^Exp(pinc_inc) - Exp(pa) ^1 - ^j Exp(pc_inc)) (7.12)

= (1 - Exp(pa) x finc x Exp(pinc-inc) - Exp(pa) x (1 - finc) x Exp(pc_inc))"

where finc = r^Z/C. But the last term in the above inequality represents exactly the expected
probability a flow will not be classified as inconsistent after n tests, when the inconsistent traffic
arrives at a fixed rate. This concludes the proof of the property. D

Thus, if the fraction at which a misbehaving node sends inconsistent traffic fluctuates, the prob-
ability to identify an inconsistent flow can only increase. This is exactly the reason we have consid-
ered in this chapter only the case in which this fraction, i.e., finc, is constant.

Property 2 The higher the rate of the inconsistent traffic is, the higher the probability to identify
an inconsistent flow is.

Proof. The proof follows immediately from Eq. (7.4) and the fact that in a well designed flow
identification test, the probability an inconsistent flow will be identified, Pmc-inc, should be larger
than the probability a consistent flow will be misidentified, pc-inc- □

121

7.5 Simulation Results

In this section we evaluate the accuracy of the flow identification test by simulation. All simulations
were performed in ns-2 [78], and are based on the original CSFQ code available at http://www.cs.cmu.
edu/~istoica/csfq.

Unless otherwise specified, we use the same parameters as in Section 4.4. In particular, each
output link has a buffer of 64 KB, and the buffer threshold for CSFQ is set to 16 KB. The averaging
constant to estimate the flow rate is K = 100 ms, and the averaging constant to estimate the fair rate
is Kn = 200 ms. In all topologies we assume that the first router traversed by each flow estimates
the rate of the flow and inserts it in the packet headers.

Each router can verify up to four flows simultaneously. Each flow is verified for at least 200
ms or 10 consecutive packets. Core routers use the same algorithm as edge routers to estimate the
flow rate. However, to improve the convergence of the estimation algorithm, the rate is initialized
to the label of the first packet of the flow that arrives during the estimation interval. As discussed
in Section 7.3.3, we set the upper threshold to Hlt = 1.2. Since we will test only for downward-
inconsistent flows - the only type of inconsistent flows that can steal service from consistent flows
- we will not use the lower threshold H/.

In general, we find that our flow identification test is robust and that our results are quite com-
parable to the results obtained in the case of the bufferless system model.

7.5.1 Calibration

As discussed in Section 7.3.2, to design the node identification test - i.e., to set parameters nt and Nt
- it is enough to know (1) the probability to identify an inconsistent flow, ;;„/, and (2) the expected
number of tests it takes to classify a flow as inconsistent, n„,r.

So far, in designing our identification tests, we have assumed a bufferless system, which ignores
the inaccuracies introduced by (1) the delay jitter, and (2) the rate estimation algorithm. In this
section we simulate a more realistic scenario by using the ns-2 simulator [78]. We consider a
simple link traversed by 30 flows out of which three are inconsistent and 27 are consistent. Note
that this corresponds to a /j„r ~ 0.1. Our goal is twofold. First we want to show that the results
achieved by simulations are reasonably close to the ones obtained by using the bufferless system.
This basically says that the bufferless system can be used as a reasonable first approximation to
design the identification tests. Second, we use the results obtained in this section to set parameters
Nt and nt for the node identification test.

We perform two experiments. In the first experiment, we assume that all flows are constant bit
rate UDPs. Figure 7.8 (a) plots the probability pid, while Figure 7.8 (b) plots the expected number
of flows that are tested before a flow is classified as inconsistent. As expected, when kinc < 1.2,
Pid —* 1. This is because even in the worst-case scenario, when all packets of a consistent flow
are forwarded, the flow's relative discrepancy will be no larger than Hu = 0.2. However, as kinc

exceeds 1.2, the probability pi(j reduces significantly, as we are more and more likely to classify a
consistent flow as inconsistent. In addition, p^ is strongly influenced by kinc. The larger the kinc

is, the larger p^ is. This is because when kjnc increases we are more and more likely to catch the
inconsistent flows. Similarly, as shown in Figure 7.8 (b), njnr is decreasing in kinc and increasing
in Kinc.

122

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

k_inc = 1.2
.. kjnc = 1.25

k inc = 1.3

10000

1000

100

1.05 1.15 1.2 1.25 1.3
10 '—

1.05 1.15 1.2 1.25

(a) (b)

Figure 7.8: (a) The probability to identify an inconsistent flow, pid, and (b) the expected number of tests it
takes to classify a flow as inconsistent, »,-„<.. We consider 30 flows, out of which three are inconsistent.

&inc Pid 11-inc

1.3 0.76 25
1.25 0.45 63.6
1.2 0.12 115
1.15 0.025 690
1.1 0 700
1 0 720

Table 7.2: pi(i and ninc as a function of the parameter kinc of the inconsistent flows. We consider 27
consistent TCP flows and 3 UDP inconsistent flows.

One thing worth noting here is that these results are consistent with the ones achieved in the
simplified bufferless system. For example, as shown in Figures 7.6(a) and 7.8(a), in both cases the
probability pid for kinc = 1.3, kinc = 1.25, and Hu = 0.7, is somewhere between 0.7 and 0.8.
This suggests that tuning the parameters in the bufferless system represents a reasonable first order
approximation.

In the second experiment we assume that all the consistent flows are TCPs, while the inconsistent
flows are again constant bit rate UDPs. The results are presented in Table 7.2. It is interesting to
note that although the TCP flows experience a dropping rate of only 5%, which would correspond
to kinc = 1.05, both pu and n;nc are significantly worse than their corresponding values in the case
of the previous experiment when kinc = 1.05. In fact, comparing the values which corresponds to
kinc = 1.3 in both Figure 7.8(a) and Table 7.2, the behavior of TCPs is much closer to a scenario in
which they are replaced by UDPs with kinc = 1.3, rather than kinc = 1.05. This is mainly because
the TCP burstiness negatively affects the rate estimation accuracy, and ultimately the accuracy of
our identification test.

In summary, for both TCP and UDP flows we take pe = 0.76 and ninc = 25. This means that
by using 25 observations, the probability to identify an inconsistent flow with kinc > 1.3 is greater
or equal to 0.76.

1.3

123

1 flow

9 flows

nodel

node 3 node 4 node 5 •v node 3 n<

node 2

10 flows

^M misbehaving node

inconsistent flow

well-behaved node

- consistent flow

aggregate traffic (node 1 -> node 4)
aggregate traffic (node 2 -> node 4)

>*"1">^>V"~,'

,^J

(a)

10 20 30 40 50 60 70 80 90 100
Time (sec)

(b)

Figure 7.9: (a) Topology used to illustrate the protection and recover)' aspects of our scheme, (b) The
aggregate throughput of all flows from router 1 to router 5, and of all flows from router 2 to router 5,
respectively. All consistent flows are UDPs with k,nr = 1.3. The inconsistent flow is UDP and has
"■nie = -t.o = Kjiic = l.o.

Finally, for the node identification test we choose nt = 2 and Nt = 25. It can be shown that this
choice increases the probability to correctly identify an inconsistent node to over 0.9.

7.5.2 Protection and Recovery

In this section we illustrate the behavior of our scheme during the protection and recovery phases.
For this we consider a slightly more complex topology consisting of five routers (see Figure 7.9(a)).
There are ten flows from router 1 to router 4, and another 10 flows from router 2 to router 4. We
assume that router 1 misbehaves by forwarding an inconsistent flow with kmc > 1. Again, note that
in this case the fraction of the inconsistent traffic is /„„. ~ 0.1. Finally, we assume that router l's
misbehavior is transitory, i.e., it starts to misbehave at time t = 33 sec, and ceases to misbehave at
time t = 66 sec. The entire simulation time is 100 sec.

In the first experiment we assume that all consistent flows have kllir = 1.3, and that the incon-
sistent flow has kinc = 1.3, and kov = 1.3. Figure 7.9(b) plots the aggregate throughputs of all
flows from router 1 to router 5, and from router 2 to router 5, respectively. Note that during the
interval (33.sec, 66.sec), i.e., during the time when router 1 misbehaves, the flows from router 2 to
router 5 get slightly higher bandwidth. This illustrates the fact that even for A;,„r = 1.3 (which is
the the minimum kinc we have considered in designing the node identification test), our algorithm is
successful in identifying the node misbehavior, and in protecting the well-behaved traffic that flows
from router 2 to router 5. In addition, once router 1 ceases to misbehave at t = 66 sec our recovery
algorithm recognizes this and stops punishing the traffic forwarded by router 1.

In Figures 7.10 (a) and (b) we plot the results for a virtually identical scenario both in the case
when all routers employ the unmodified CSFQ, and in the case when the routers employ the "verify-
and-protect" version of CSFQ. The only difference is that the inconsistent flow now has kinr = 2,
instead of 1.3. The reason for the increase of kinc is to make it easier to observe the amount of
bandwidth that is stolen by the inconsistent flow from the consistent flows when the unmodified
CSFQ is used. This can be seen in Figure 7.10 (a) as the aggregate throughput of all flows from

124

7 -

S 2

aggregate traffic (node 1 -> node 4)
aggregate traffic (node 2 -> node 4)

3 •

aggregate traffic (node 1 -> node 4)
aggregate traffic (node 2 -> node 4)

10 20 30 40 50 60
Time (sec)

70 80 90 100 10 20 30 40 50 60
Time (sec)

(a) (b)

Figure 7.10: Aggregate throughputs of all flows from router 1 to router 5, and from router 2 to router 5,
when all routers implement (a) the unmodified CSFQ, and (b) the "verify-and-protect" version of CSFQ. All
consistent flows are UDPs with kinc — 1.3. The inconsistent flow is UDP with fc,nc = 2, and fc;nc = 1.

router 2 to router 5 is slightly less than 5 Mbps. In contrast, when the "verify-and-protect" version
is used, these flows get considerably more than 5Mbps. This is because once router 3 concludes
that router 1 misbehaves, it punishes all its flows by simply multiplying their labels by k{nc ~ 2. As
a result, the traffic traversing router 1 gets only 33%, instead of 50%, of the link capacities at the
subsequent routers.

Finally, Figures 7.11 (a) and 7.11(b) plot the results for the case in which consistent flows are
replaced by TCPs. As expected, the results are similar: the "verify-and-protect" version of CSFQ is
able to successfully protect and recover after router 1 stops misbehaving.

7.6 Summary

While the solutions based on SCORE/DPS have many advantages over traditional stateful solutions
(see Chapter 4, 5, 6), they still suffer from robustness and scalability limitations when compared to
the stateless solutions. In particular, the scalability is hampered because the network core cannot
transcend trust boundaries (such as the ISP-ISP boundaries), and therefore high-speed routers on
these boundaries must be stateful edge routers. The lack of robustness is because the malfunctioning
of a single edge or core router could severely impact the performance of the entire network, by
inserting inconsistent state in the packet headers.

In this chapter, we have proposed an approach to overcome these limitations. To achieve scal-
ability we push the complexity all the way to the end-hosts. To address the trust and robustness
issues, all routers statistically verify whether the incoming packets carry consistent state. We call
this approach "verify-and-protect". This approach enables routers to discover and isolate misbehav-
ing end-hosts and routers. The key technique needed to implement this approach is flow verification
that allows the identification of packets carrying inconsistent state. To illustrate this approach, we
have described the identification algorithms in the case of Core-Stateless Fair Queueing (CSFQ),
and we have presented simulation results in ns-2 [78] to demonstrate its effectiveness.

70 80 90 100

125

fc 2

aggregate traffic (node 1 -> node 4)
aggregate traffic (node 2 -> node 4)

A-AAf\A i„.y
w.

' v'vvyv

10 20 30 40 50 60
Time (sec)

(a)

70 80 90 100

aggregate traffic (node 1 -> node 4) —
aggregate traffic (node 2 -> node 4)

c.^J-x,:-/)^^

y^v\Mrv-'

10 20 30 40 50 60
Time (sec)

(b)

70 80 90 100

Figure 7.11: Aggregate throughputs of all flows from router 1 to router 5, and from router 2 to router 5,
when all routers implement (a) the unmodified CSFQ. and (b) the "verify-and-protect" version of CSFQ. All
consistent flows are TCPs. The inconsistent flow is UDP with /,„,,. = 2. and A,,,,. = 1.

A final observation is that the "verify-and-protect" approach can also be useful in the context
of stateful solutions. Based only on the traffic a router sees, these solutions are not usually able to
tell whether there is a misbehaving up-stream router or not. For example, with Fair Queueing there
is no way for a router to discover an up-stream router that spuriously drops packets, as it cannot
differentiate between a flow whose packets were dropped by a misbehaving router, and a flow who
just sends fewer packets. Thus, the "verify-and-protect" approach can be also used to effectively
increase the robustness of the traditional stateful solutions.

126

Chapter 8

Prototype Implementation Description

In Chapters 4, 5 and 6 we have presented three applications of our SCORE/DPS solution to provide
scalable services in a network in which core routers maintain no per flow state. In this chapter,
we describe a prototype implementation of our solution. In particular, we have fully implemented
the functionalities required to provide guaranteed and flow protection services. While section 5.5
presents several experimental results, including overhead measurements of our prototype, this chap-
ter focuses on the implementation details.

The main goal of the prototype implementation is to show that it is possible to efficiently de-
ploy our algorithms in today's IPv4 networks with minimum incompatibility. To prove this point
we have implemented a complete system, including support for fine grained monitoring, and easy
configuration. The current prototype is implemented in FreeBSD v2.2.6, and it is deployed in a test-
bed consisting of 300 MHz and 400 MHz Pentium II PCs connected by point-to-point 100 Mbps
Ethernets. The test-bed allows the configuration of a path with up to two core routers.

Although we had complete control of our test-bed, and, due to resource constraints, the scale
of our experiments was rather small (e.g., the largest experiment involved just 100 flows), we have
devoted special attention to making our implementation as general as possible. For example, while
in the current implementation we re-use protocol space in the IP header to store the DPS state, we
make sure that the modified fields can be fully restored by the egress router. In this way, the changes
operated by the ingress and core routers on the packet header are completely transparent to the
outside world. Similarly, while the limited scale of our experiments would have allowed us to use
simple data structures to implement our algorithms, we try to make sure that our implementation
is scalable. For example, instead of using a simple linked list to implement the CJVC scheduler,
we use a calendar queue together with a two-level priority queue to efficiently handle a very large
number of flows (see Section 8.1).

For debugging and management purposes, we have implemented full support for packet level
monitoring. This allows us to visualize simultaneously and in real-time the throughputs and the
delays experienced by flows at different points in the network. A key challenge when implementing
such a fine grained monitoring functionality is to minimize the interferences with the system oper-
ations. We use two techniques to address this challenge. First, we off-load as much as possible of
the processing of log data on an external machine. Second, we use raw IP to send the log data from
router's kernel directly to the external machine. This way, we avoid context-switching between the
kernel and the user level.

To easily configure our system, we have implemented a command line configuration tool. This

127

tool allows us (1) to configure routers as ingress, egress, or core, (2) set-up, modify, and tear-down
a reservation, and (3) set-up the monitoring parameters. To minimize the interferences between
the configuration operations and data processing, we implement our tool on top of the Internet
Control Management Protocol (ICMP). Again, by using ICMP, we avoid context-switching when
configuring a router.

The rest of the chapter is organized as follows. The next section presents details of the main
operations implemented by the data and control paths. Section 8.2 describes encoding techniques
used to efficiently store the DPS state in the packet headers. Section 8.3 presents our packet level
monitoring tool, while Section 8.4 describes the configuration tool. Finally, Section 8.5 concludes
this chapter.

8.1 Prototype Implementation

For all practical purposes, a FreeBSD PC implements an output queueing router. Output interfaces
usually employ a FIFO scheduling discipline, and drop-tail buffer management. Upon a packet
arrival, the router performs a routing table lookup, based on the packet destination address, to deter-
mine to which output interface the packet should be forwarded. If the output link is idle, the packet
is passed directly to the device driver of that interface. Otherwise, the packet is inserted at the tail
of the packet queue associated to the interface, by using the IFJENQUEUE macro.

When the output link becomes idle, or when the network card can accept more packets, a hard-
ware interrupt is generated. This interrupt is processed by the device driver associated with the net-
work card. As a result, the packet at the head of the queue is dequeued (by using the IFJDEQUEUE

macro) and sent to the network card.
Our implementation is modular in the sense that it requires few changes to the FreeBSD legacy

code. The major change is to replace the queue manipulation operations implemented by IF.ENQUEUE

and IFJDEQUEUE. In particular, we replace

IF_ENQUEUE(&ifp->if_snd, mb_head);

with

if (ifp->node_type)
dpsEnqueue(ifp, (void **)&mb_head);

else
IF_ENQUEUE(&ifp->if_snd, mb_head);

In other words, we first check whether the router is configured as a DPS router or not, and if yes,
we call dpsEnqueue to enqueue the packet1 in a special data structure maintained by DPS. If not,
we simply use the default IFJDEQUEUE macro. Similarly, we replace

IF_DEQUEUE(&ifp->if_snd, mb_head);

'internally, FreeBSD stores packets in a special data structure called mhuf. An ordinary mbuf can store up to 108
bytes of data. If a packet is larger than 108 bytes, a chain of mbufs is used to store the packet, mb Jiead represents the
pointer to the first mbuf in the chain.

128

with

if (ifp->node_type)
dpsDequeue(ifp, &mb_head);

else
IF_DEQUEUE(&ifp->if_snd, mb_head);

In the current implementation, we support two device drivers: the Intel EtherExpress Pro/100B
PCI Fast Ethernet driver, and the DEC 21040 PCI Ethernet Controller. As a result, the above changes
are limited to three files: if.ethersubr.c, which implements the Ethernet device-dependent function-
ality, and ifjde.c and ifjxp.c that implement the device-dependent functionalities for the two drivers
we support.

In the remainder of this section, we present implementation details for the operations performed
by our solution on both the data and control paths. All the processing is encapsulated by the dpsEn-
queue and dpsDequeue functions. The implementation is about 5,000 lines.

8.1.1 Updating State in IP Header

Before forwarding a packet, a core router may update the information carried in its header. For
example, in the case of Core-Stateless Fair Queue (CSFQ), if the estimated rate carried by a packet is
larger than the link's fair rate, the router has to update the state carried by the packet (see Figure 4.3).
Similarly, with Core-Jitter Virtual Clock (CJVC), a router has to insert the "ahead of schedule"
variable, g, before forwarding the packet (see Figure 5.3).

Updating the state involves two operations: encoding the state, and updating the IP checksum.
State encoding is discussed in details in Section 8.2. The checksum is computed as the l's comple-
ment over the IP header, and therefore it can be easily updated in an incremental fashion.

8.1.2 Data Path

In this section we present the implementation details of the main operations performed by ingress
and core routers on the data path: packet classification, buffer management, and packet scheduling.
Since the goal of our solution is to eliminate the per flow state from core routers, we will concentrate
on operation complexity at these routers. (The exception is packet classification which is performed
by ingress routers only.)

8.1.2.1 Packet Classification

Recall that in SCORE/DPS only ingress routers need to perform packet classification. Core routers
do not, as they process packets based only on the information carried in the packet headers.

Our current prototype offers only limited classification capabilities.2 In particular, a class is
defined by fully specifying the source and destination IP addresses, the source and destination port
numbers, and the protocol type. This allows us to implement packet classification by using a simple
hash table [26], in which the keys are computed by xor-ing all fields in the IP header that are used
for classification.

2This can be easily fixed, by replacing the current classifier with the more complete packet classifier developed in the
context of the Darwin project at Carnegie Mellon University [19].

129

rate-regulator

system time

(a)

system time

1

Figure 8.1: Data structures used to implement CJVC. The rate-regulator is implemented by a calendar queue,
while the scheduler is implemented by a two-level priority queue. Each node at the second level (and each
node in the calendar queue) represents a packet. The first number represents the packet's eligible time; the
second its deadline, (a) and (b) show the data structures before and after the system time advances from 5 to
6. Note that all packets that become eligible are moved in one operation to the scheduler data structure.

8.1.2.2 Buffer Management

With both CJVC and CSFQ, routers do not need to maintain any per flow state to perform buffer
management. In particular, with CSFQ, packets are dropped probabilistically based on the flow
estimated rate carried by the packet header, and the link fair rate (see Figure 4.3 and 4.4). In the case
of CJVC, we simply use a single drop-tail queue for all the guaranteed traffic. This is made possible
by the fact that, as we have discussed in Section 5.3.3, a relatively small queue can guarantee with
a very high probability that no packets are ever dropped. For example, for all practical purposes, a
8,000 packet queue can handle up to one million flows!

8.1.2.3 Packet Scheduling

With CSFQ, the scheduling is trivial as the packets are transmitted on a Fist-In-First-Out basis. In
contrast, CJVC, is significantly more complex to implement. With CJVC, each packet is assigned
an eligible time and a deadline upon its arrival. A packet becomes eligible when the system time
exceeds the packet's eligible time. The eligible packets are then transmitted in the increasing order
of their deadlines. Similar to other rate-controlled algorithms [112,126], we implement CJVC using

130

a combination of a calendar queue and a priority queue [10].
The calendar queue performs rate-regulation, i.e., it stores packets until they become eligible.

The calendar queue is organized as a circular queue in which every entry corresponds to a time
interval [15]. Each entry stores the list of all packets that have the eligible times in the range
assigned to that entiy. When the system time advances past an entry, all packets in that entry
become eligible, and they are moved in a priority queue. The priority queue maintains all eligible
packets in decreasing order of their deadlines. Scheduling a new packet reduces then to the selection
of the packet at the head of the priority queue, i.e., the packet with the smallest deadline.

The algorithmic complexity of the calendar queue depends on how packets are stored within an
entry. If they are maintained in a linked list, then the insertion and deletion of a packet are constant
time operations. In contrast, insertion and deletion of a packet in the priority queue takes O(logn),
where n is the number of packets stored in the priority queue [26]. Thus the total cost per packet
manipulation is O(logn).

While the above implementation is quite straightforward, it has a significant drawback. As
described above, when the system time advances, all packets in an entry become simultaneously
eligible, and they have to be transferred in the scheduler priority queue. The problem is that, at
least theoretically, the number of packets that become eligible can be unbounded. Moreover, since
the packets are maintained in a simply linked list, we need to move them one-by-one! Thus, if
we have to move m packets, this will take 0(m log n). Clearly, in a large system this solution is
unacceptable, as it may result in packets missing their deadlines due to the large processing time
required to move all packets from a calendar queue entry.

To address this problem, we store all packets that belong to the same calendar queue entry in
a priority queue ordered by the packets' deadlines. This way, when these packets become eligible,
we can move all of them in the scheduler data structure in one step. To achieve this, we change the
scheduler data structure to a two-level priority queue. Figure 8.1 illustrates the new data structures
in the context of a movement operation. Thus, with the new data structures, we reduce the time it
takes to move all packets from a calendar queue entry into the scheduler data structure to 0(log n).

A final point worth noting is that the number of packets, n, that are stored at any time in these
data structures is, with a very high probability, much smaller than the total number of active flows.
As discussed in Section 5.3.3, this is an artifact of the fact that flows are aggressively regulated at
each node in the SCORE domain.

8.1.3 Control Path

Providing per flow isolation does not require any operations on the control path. In contrast, pro-
viding guaranteed services requires a signaling mechanism to perform per flow admission control.
However, as described in Section 5.4, the implementation of admission control at the core routers is
quite straightforward. For each output link, a router maintains a value B that is updated every time
a new packet arrives. Based on this value, the router periodically updates the upper bound of the
aggregate reservation Rbound (see algorithm in Figure 5.6). Finally, to decide whether to accept a
new reservation or not, a core router just needs to perform a few arithmetic operations (again, see
Figure 5.6).

131

8.2 Carrying State in Data Packets

In order to eliminate the need for maintaining per flow state at each router, our DPS based algorithms
require packets to cany state in their headers. Since there is limited space in protocol headers and
most header bits have been allocated, the main challenge to implementing these algorithms is to
(a) find space in the packet header for storing DPS variables and at the same time remain fully
compatible with current standards and protocols; and (b) efficiently encode state variables so that
they fit in the available space without introducing too much inaccuracy. In the remainder of the
section, we present our approach to address the above two problems in IPv4 networks.

There are at least three alternatives to encode the DPS state in the packet headers:

1. Use a new IP option. (Note that DPS has been already assigned IP option number 23 by the
Internet Assignment Number Authority (IANA) [56].)

From the protocol point of view, this is arguably the least intrusive approach, as it requires
no changes to IPv4 or IPv6 protocol stacks. The downside is that using the IP option can add
a significant overhead. This can happen in two ways. First, most of today's IPv4 routers are
very inefficient in processing the IP options [109]. Second, the IP option increases the packet
length, which can cause packet fragmentation.

2. Introduce a new header between the link layer and the network layer, similar to the way labels
are transported in Multi-Protocol Label Switching (MPLS) [17].

Like the previous approach, this approach does not require any changes in the IPv4/IPv6
protocol stack. However, since each router has to know about the existence of the extra header
in order to correctly process the IP packets, this approach requires changes in all routers, no
matter whether this is needed to correctly implement the DPS algorithms or not. In contrast,
with the IP option approach, if a router does not understand a new IP option, it will simply
ignore it. In practice, this can be an important distinction, as many of today's core routers are
typically uncongested. Thus, if we were to implement a service like flow protection, with the
IP option approach we don't need to touch these routers, while with this approach we need to
change all of them.

An additional problem is that this approach requires us to devise different solutions for dif-
ferent link layer technologies. Finally, note that it also suffers from a fragmentation problem,
since the addition of the extra header will increase the size of the packet.

Another option to implement this approach would be to leverage MPLS, whenever possible.
In particular, in a network that implements MPLS, a solution would be to use an extra MPLS
label to encode the DPS state.

3. Insert the DPS state in the IP header. The main advantage of this approach is that it avoids the
penalty imposed by most IPv4 routers in processing the IP options, or the need of devising
different solutions for different technologies as it would have been required by introducing
a new header between the link and network layers. The main problem however is finding
enough space to insert the extra information.

132

While the first two approaches are quite general and can potentially provide large space for
encoding state variables, due to performance and easy of implementation reasons, we choose the
third approach in our current prototype.3

8.2.1 Carrying State in IP Header

The main challenge to carrying state in the IP header is to find enough space to insert this informa-
tion in the header while remaining compatible with current standards and protocols. In particular,
we want the network domain to be transparent to end-to-end protocols, i.e., the egress node should
restore the fields changed by ingress and core nodes to their original values. To achieve this goal, we
first use four bits from the type of service (TOS) byte (now renamed the Differentiated Service (DS)
field) which are specifically allocated for local and experimental use [75]. In addition, we observe
that there is an ip-off field of 13 bits in the IPv4 header to support packet fragmentation/reassembly
which is rarely used. For example, by analyzing the traces of over 1.7 million packets on an OC-3
link [77], we found that less than 0.22% of all packets were fragments.

Therefore, in most cases it is possible to use ip-off field to encode the DPS values. This idea
can be implemented as follows. When a packet arrives at an ingress node, the node checks whether
a packet is a fragment or needs to be fragmented. If neither of these are true, the ip-off field in the
packet header will be used to encode DPS values. When the packet reaches the egress node, the
ip-off is cleared. Otherwise, if the packet is a fragment, it is forwarded as a best-effort packet. In
this way, the use of ip-off is transparent outside the domain. We believe that forwarding a fragment
as a best-effort packet is acceptable in practice, as end-points can easily avoid fragmentation by
using a Minimum Transfer Unit (MTU) discovery mechanism. Also note that in the above solution
we implicitly assume that packets can be fragmented only by egress nodes.

In summary, we have up to 17 bits available in the current IPv4 header to encode four state
variables (see Figure 8.4). The next section discusses some general techniques to efficiently encode
the DPS state.

8.2.2 Efficient State Encoding

One simple solution to efficiently encode the state is to restrict each state variable to only a small
number of possible values. For example if a state variable is limited to eight values, only three bits
are needed to represent it. While this can be a reasonable solution in practice, in our implementation
we use a floating point like representation to represent a wider range of values. To further optimize
the use of the available space we employ two additional techniques. First, we use the floating point
format only to represent the largest value, and then represent the other value(s) as a fraction of the
largest value. In this way we are able to represent a much larger range of possible values. Second, in
the case in which there are states which are not required to be simultaneously encoded in the same
packet, we use the same field to encode them. Next, we present the floating point like format used
to encode large values.

Assume that a is the largest value carried by the packet, where a is a positive integer. To
represent a we use an m bit mantissa and an n bit exponent. Since a > 0, it is possible to gain an

3This choice can be also seen as an useful exercise that forces us to aggressively encode the state in the scarce space
available in the IP header.

133

void intToFP(int val, int *mantissa, int *exponent)
int nbits = get_num_bits(val);
if (nbits <= m) {

♦mantissa = val;
♦exponent = (1 << n) - 1;

} else {
♦exponent = nbits - m - 1;
♦mantissa = (val >> ♦exponent) - (1 << m);

int FPToInt(int mantissa, int exponent)
int tmp;
if (exponent == ((1 << n) - 1))
return mantissa;

tmp = mantissa | (1 << m);
return (tmp << exponent)

Figure 8.2: The C code for converting between integer and floating point formats, m represents the number
of bits used by the mantissa; v represents the number of bits in the exponent. Only positive values are
represented. The exponent is computed such that the first bit of the mantissa is always 1. when the number is
> 2"1. By omitting this bit, we gain an extra bit in precision. If the number is < 2'" we set by convention the
exponent to 2" — 1 to indicate this.

extra bit for mantissa. For this we consider two cases: (a) if a > 2m we represent a. as the closest
value of the form u,2v, where 2m < u < 2"'+1. Then, since the m + 1-th most significant bit in
the us representation is always 1, we can ignore it. As an example, assume m = 3, n = 4, and
a = 19 = 10011. Then 19 is represented as 18 = u x 2", where u = 9 = 1001 and v = 1. By
ignoring the first bit in the representation of u the mantissa will store 001, while the exponent will
be 1. (b) On the other hand, if a < 2T", the mantissa will contain a, while the exponent will be
2" - 1. For example, for m = 3, n = 4, and a = 6 = 110, the mantissa is 110, while the exponent
is 1111. Converting from one format to another can be efficiently implemented. Figure 8.2 shows
the conversion code in C. For simplicity, we assume that integers are truncated rather than rounded
when represented in floating point.

By using m bits for mantissa and n for exponent, we can represent any integer in the range
[0..(2m+1 - 1) x (22""1)] with a relative error bounded by (-l/2r"+\ l/2m+1). For example,
with 7 bits, by allocating 3 for mantissa and 4 for exponent, we can represent any integer in the
range [1..15 x 215] with a relative error bounded by (-6.25%. 6.25%). Note that these bounds are
not necessary tight. Indeed, in this example, the worst cases occur when encoding the numbers
271, and 273, which both have a mantissa of 8. In particular, 271 = 100001111 is encoded as
u = 1000, v = 5, and has a relative error of (8 x 25 - 271)/271 = -0.0554 = -5.54%, while
273 = 100010001 is encoded as u = 1001, v = 5, and has a relative error of 5.55%.

If another value b < a is carried by the packet we store it as the fraction / = b/a. Assuming that
we use mj bits to represent /, the absolute error is bounded by (-l/(2(2mi -1)), l/(2(2mi -1))).

134

ToS byte (PS field) fragment offset (ip_off) field
0 0

7-^ 5 3- A 1 0 Ml? ~1S

13 12

pij used by IP forwarding
or by Diffserv

| | unused

Q used by DPS

Figure 8.3: For carrying DPS state we use the four bits from the TOS byte (or DS field) reserved for local
use and experimental purposes, and up to 13 bits from the IP fragment offset.

The —1 in the denominators is a result of mapping 2mi values to [0, 1], with 2mi — 1 representing
1. Finally, it is easy to show that by representing a in floating point format with m bits for mantissa
and n bits for exponent, and by using mi bits to encode b, the relative error of a + b, denoted
RelErr(a + b), is bounded by

< RelErria + b) < ——r + ——, -, (8.1)
2»7l+l 2ml+l — 2 2m+i 2mi+1 — 2'

where we ignore the second order term l/(2m+1 (2mi+1 — 2)).
In the next sections, we describe in detail the state encoding in the case of both guaranteed and

flow protection services.

8.2.3 State Encoding for Guaranteed Service

With the Guaranteed service, we use three types of packets to carry the DPS state: (1) data packets,
(2) dummy packets, and (3) reservation request packets. Below, we describe the state encoding in
each of these cases:

8.2.3.1 Data packet

As described in Chapter 5, there are four pieces of state that need to be encoded in a data packet:
(1) the reserved rate r or equivalently l/r, where / is the packet length, (2) the slack delay 8, as
computed by Eq. (5.10), (3) the amount of time g by which the packet was transmitted ahead of
schedule at the previous node, and (4) b, as computed by Eq. (5.12). The first three pieces of state
are used to perform packet scheduling, while the last one is used to perform admission control. All
are positive values. Figure 8.4 shows the state encoding in this case. The first two bits represent the
code that identifies the state format. The rest of the 15 bits are allocated to four fields:

• a 1-bit flag, called T, that specifies how the next field, Fl, is interpreted

• a 3-bit field Fl. If T = 0, then Fl encodes the b value. Otherwise, it encodes (l/r)/F3.

• a 4-bit field Fl that encodes g/F3

• a 7-bit field F3 that encodes l/r + 5.

We make several observations. First, since F3 encodes the largest value among all fields, we
represent it in floating point format. By using this format, with seven bits we can represent any

135

Service
type

Packet
type State encoding Var. Types State semantics

Guaranteed
service

Data
packet

Id 15 14 13 11 10 7 6 0 F-flagd bit)
Fl - integer (3 bit)
Fl - integer (4 bit)
F3 - float (3 bit mantissa.

4 bit exponent)

d - current _ time + F3 - (F2 +1)

lf(7- = 0)
c = d-FlxF3

else
c = current time
b = F\

1 1 T Fl Fl n

Dummy
packet

16 15 14 n i: ii io ') o Fl - float (6 bit mantissa.
4 bit exponent)

b= 1
1 0 1 0 0 0 0 Fl

Rsv.
packet

16 15 14 1.1 12 11 7 6 0 £>-flag (1 bit)
tf-flagd bit)
Fl - integer (5 bit)
F3 - float (3 bit mantissa.

4 bit exponent)

/i = Fl
r = F2 1 0 0 D R Fl Fl

Relative
diff.
(LIRA)

Data
packet

16 15 14 13 12 0 P-flag (1 bit)
A/-flae(l bit)
Fl - integer (13 bit)

prcfercd = P
marked = M
label = F\

0 1 P M Fl

Flow
protection
(CSFQ)

Data
packet

16 15 14 13 12 11 10 9 0 Fl - float (5 bit mantissa.
5 bit exponent)

?=Fl
0 0 0 0 0 0 0 F\

Figure 8.4: State encoding in the case of providing guaranteed service, and flow protection.

positive number in the range [1..15 x 215], with a relative error within (-6.25%, 6.25%). Second,
since the deadline determines the delay guarantees, we use a representation that trades eligible time
accuracy for deadline accuracy.4 In particular, the deadline is computed as d = current Jime+F2*
F3 + F3 ~ currentJirne+g+l/r+S. If Tis 0, the eligible time is computed as e = d—Fl*F3 ~
current Jime + g + 5. Fl uses only three bits and its value is computed such that Fl * F3 always
overestimates I jr. If Tis 1, the eligible time is computed simply as e = current Jime. Third, we
express b in 1 KB units. In this way we eliminate the need for each packet to carry the b value. In
fact, if a flow sends at its reserved rate, only one packet in every eight packets needs to cany the
b value. This observation, combined with the fact that the under-estimation of the packet eligible
time does not affect the guaranteed delay of the flow, allows us to alternatively encode either b or
(l/r)/F3 in Fl, without impacting the correctness of our algorithms.

8.2.3.2 Dummy packet

As described in Section 5.4, if a flow does not send any data packet for a period of time larger
than Tj, the ingress router has to send a dummy packet. In practice, this can be either a packet
newly generated packet by the ingress, or a best-effort packet that happens to traverse the same
path. The state in the dummy packet has the code 1010000, and it carries only the b value in the Fl
field. Note that using a long code leaves extra room for defining other state formats in the future.
Dummy packets are forwarded with a priority higher than the priority of any other traffic excepting
the guaranteed traffic.

4As long as the eligible time value is under-estimated, its inaccuracy will affect only the scheduling complexity, as the
packet may become eligible earlier.

136

8.2.3.3 Reservation request packet

This packet is generated by an ingress router upon receiving a reservation request. The ingress
forwards this packet to the corresponding egress router in order to perform the requested reservation.
Upon receiving this packet, a core router performs admission control, and updates the state carried
by the packet accordingly. When an egress router receives a reservation request packet, it sends it
back to the ingress. Upon receiving this packet, the ingress router makes the final decision. Like the
dummy packet, the reservation request packet can be either a newly generated packet, or a best-effort
packet that happens to traverse the same path.

The code of the state format carried by this packet is 101. The packet carries four fields in its
header:

• a 1-bit field, D, that denotes whether the packet traverses the forward or the backward path.
If D = 1, the packet traverses the forwarding path; otherwise the packet is on its way back to
the ingress router that generated it.

• a 1-bit field, A, which specifies the current state of the reservation request. If A = 1, then
all previous routers have accepted the reservation request; otherwise at least one router has
denied it.

• a 5-bit field, Fl, that stores the number of hops, h, on the forwarding path. The field is
incremented by each core router along the path. The number of hops is required to compute
the slack variable of each packet at the ingress router (see Eq. (5.10)). Note that the current
implementation allows a path with at most 32 hops. While this value does not cover the
lengths of all end-to-end routes observed in today's Internet, this value should be enough for
an ISP domain, which is the typical SCORE domain.

• a 7-bit field that stores the requested rate. This rate is stored in floating point format, with a
3-bit mantissa and a 4-bit exponent, and is expressed in 1 Kbps units.

8.2.4 State Encoding for LIRA

With LIRA, we use only one type of packet to carry the DPS state information. The first two bits are
always 01, and represent the code that identifies the state format. The rest of the 15 bits are divided
into three fields as follows:

• a 1-bit flag, P, called the preferred bit. This bit is set by the application or user and indicates
the dropping preference of the packet. This bit is immutable, i.e., it cannot be modified by
any router in the network.

• a 1-bit flag, M, called the marking bit. This bit is set by the ingress routers of an ISP and
indicates whether the packet is in- or out-of profile. When a preferred packet arrives at an
ingress node, the node marks it if the user has not exceeded its profile; otherwise the packet is
left unmarked. Whenever there is a congestion, a core router always drops unmarked packets
first. Irrespective of the congestion state, core routers never change the marked bit. The reason
we use two bits (i.e., the marked and the preferred bits) instead of one is that in an Internet

137

environment with multiple ISPs, even if a packet may be out-of profile in some ISPs on the
earlier portion of its path, it may still be in-profile in a subsequent ISP. Having the preference
bit that is unchanged by upstream ISPs on the path will allow downstream ISPs to make the
correct decision.

• a 13-bit integer that represents the packet label. As discussed in Section 6.3.4, a label is
computed as the XOR over the identifiers of all routers along the flow's path. The length of a
router's identifier is equal to the label's length, i.e., 13 bit. The packet label is initialized by the
ingress router and updated by core routers as the packet is forwarded. Note that there is a non-
zero probability that two labels may collide, i.e., that two alternate paths between the same
routers have the same label. If router identifiers are uniformly distributed, the probability of
collision is 1/2U = 1/8192. While this probability cannot be neglected in practice, there
are two points worth noting. First, this problem can be alleviated by having the ISP choose
the router identifiers such that the probability of label collision is minimized. Second, note
that even if two alternate paths have the same label, the worst thing that may happen is an
alternate path will be ignored. Although this will eventually reduce the link utilization, it will
not jeopardize the correctness of our scheme.

8.2.5 State Encoding for CSFQ

As discussed in Chapter 4, with CSFQ, data packets carry only one piece of state: the estimated rate
of the flow. In this case, we define a code of 010000, and a 10-bit field that encodes the estimated
rate, by using a floating point format with a 5-bit mantissa, and a 5-bit exponent. The estimated rate
is initialized by the ingress router and then updated by core routers whenever the estimated rate is
greater than the fair rate on the output link (see Section 4.3).

By using a long code for the CSFQ state, we leave considerable room for defining future state
formats.

8.2.6 State Encoding Formats for Future Use

By inspecting the state encoding formats in Figure (8.4), it is easy to see that there is significant
room for future extensions. In particular, any state encoding format that starts with 001, 111, 1011,
0001,10101,00001, 101001,000001, 1010001 orOOOOOOl is available for future use. Thus, even by
restricting ourselves to reusing the space in the IP packet header, we can still design new DPS based
algorithms and mechanisms that (at least at the level of the state encoding) are fully compatible to
the solutions proposed in this dissertation, and that can use up to 14 bits for specific state encoding.

8.3 System Monitoring

When implementing a network service, a key challenge is discovering whether the service is work-
ing or not, and, more importantly, if it doesn't work, finding out why. To help answer these questions
we need a monitoring tool that can accurately expose router behavior. Ideally, we want the ability
to monitor router's behavior in real time, and at the smallest possible granularity, i.e., at the packet

138

IP Packet Header

4 IHL ToS total length (16 bits)

identification (16 bits) flags fragment offset (13 bits)

TTL protocol header checksum (16 bits)

source IP address (32 bits)

destination IP address (32 bits)

arrival time (32 bits)
departure time (32 bits)

log type

Figure 8.5: The information logged for each packet that is monitored. In addition to most fields of the IP
header, the router records the arrival and departure times of the packet (i.e., the ones that are shaded). The
type of event is also recorded, e.g., packet departure, or packet drop. The DPS state is carried in the ToS and
the fragment offset fields.

level. A key challenge when implementing such a fine grained monitoring functionality is to mini-
mize the interferences to the monitored system.

A possible solution that fully addresses this challenge is to use a hub or a similar device be-
fore/after each router's interface to replicate the entire traffic and divert it to an external monitoring
machine where it can be processed. Unfortunately, there are two problems with this solution. First,
it is very hard to accurately measure the arrival and the departure times of a packet. With a simple
hub we can infer these times only when packets arrive at the monitoring machine. However, the
packet processing overhead at the monitoring machine can significantly impact the accuracy of the
time estimates. Even with a special device that can insert a timestamp in each packet when the
packet is replicated, the problem is not trivial. This is because the arrival and departure times of
a packet are inserted by two different devices, so we need a very accurate synchronization clock
mechanism to minimize the errors. The second problem with this solution is that it requires an
expensive hardware infrastructure.

For these reasons, in our implementation we use an alternate approach. In particular, we in-
strument the kernel to perform packet level monitoring. For each packet, we record the arrival and
the departure times with very high accuracy using the Pentium clock counter. In addition to these
times, with each packet we log most of the fields of the IP header, including the DPS state carried
by the packet, and a field, called log type, which specifies whether the packet was transmitted or
dropped. To minimize the monitoring overhead, we use the ip_output function call to send this
information directly from kernel to an external monitoring machine. Using ip_output, instead of
ioctl, for transferring log data, avoids unnecessary context switching between the kernel and the
user level. In addition, we off-load as much as possible of the log data processing to the monitoring
machine. The functions performed by a router are kept to minimum: a router has only to (1) log
packet arrival and departure times, and (2) send the log data to the monitoring machine. In turn, the
monitoring machine performs the bulk of data processing, such as packet classification, and com-
puting the rate and/or delay of a flow. To further reduce the monitoring overhead, we provide the

139

ability to sample the data traffic. In particular, we can configure the router to probabilistically log
one out of every 2, 4, 16, or 64 packets. Finally, to eliminate possible interferences between the
data traffic and transferring the log data, we use a different network interface to send out the log
information.

To visualize the monitoring information, we have developed a Graphical User Interface (GUI)
written in Java. This tool offers the possibility of simultaneously plotting up to nine graphs in real
time. Each of the graphs can be independently configured. In particular, the monitoring tool allows
us to specify for each graph:

•

•

the network interface to be monitored. This is specified by the IP address of the router to
which the interface is attached, and the IP address of the neighboring router that is connected
to the interface.

the flows to be monitored at the selected network interface. In our case, a flow is identified
by its source and destination IP addresses, its source and destination port numbers, and the
protocol type.

the parameters to monitor. Currently the tool can plot the throughput and the delay of a flow.
The throughput is averaged over a specified time period. The delay can be computed either
as the minimum, maximum, or average packet delay over a specified period of time.

This flexibility allows us, for example, to simultaneously visualize the throughput and per-hop
delay of a flow at different hops, to visualize the throughput and the delay of a flow at the same hop,
or to visualize the throughput of a flow at multiple time scales. As an example, Figure 3.5 shows a
screen snapshot of our monitoring tool. The top two plot show the throughputs of three flows at two
consecutive hops. The bottom two plots show the delays of the same flows at the same hops.

8.4 System Configuration

As with any software system, we need the ability to configure our system. In particular, we want
the ability to configure a router as an ingress, egress, or core, and to set-up the various parameters
of the packet classifier and packet scheduler. In addition, in the case of the guaranteed service, we
want the ability to set-up, modify, and tear-down a flow reservation. One possible solution would be
to use an ioctl function call. Unfortunately, this approach has a significant drawback. Since the
execution of ioctl is quite expensive - it requires context-switching between the kernel and the
user level - it can seriously interfere with the processing of the data traffic. At the limit, in the case
of the guaranteed traffic, this can result in packets missing their deadlines.

To avoid this problem, we use the Internet Control Management (ICMP) protocol. In particular,
we have written a simple command line utility, called conf ig_dps, that can be used to config-
ure routers and initialize their parameters via ICMP. To achieve this, we have extended the ICMP
protocol by adding two new messages: ICMPJDPSREQ, and ICMP_DPSREPLY.

140

8.4.1 Router Configuration

So far we have classified routers as edge and core routers, and the edge routers as ingress and egress
routers. While at the conceptual level this classification makes sense, in practice, this distinction is
less clear. For example, an edge router can be either an ingress or egress depending on the direction
of the traffic that traverses it. As a result, we need to configure at a finer granularity, i.e., at the
network interface level, instead of at the router level. We identify an interface by two IP addresses:
the address of the router to which the interface is attached, and the address of the downstream router
connected to the interface. We then use the following command to configure a network interface:

■*&

config_dps 2 node next_node type

The first parameter of the command, the number 2, specifies that an interface is being configured.
The next two parameters specify the interface: node represents the IP address of the router whose
interface is being configured, and next .node specifies the IP address of the downstream router
that is connected to the interface. Finally type specifies whether this interface is configured as
belonging to an ingress, egress, or core router.

8.4.2 Flow Reservation

In the case of the guaranteed service we need the ability to set-up, modify, and tear-down a flow
reservation.

To set-up a new reservation we use the following command:

config_dps 3 ingress egress src_addr dst_addr src_port dst_port
proto rsv_rate g_size

The first parameter, the number 3, specifies that this command requests a new reservation. The next
two parameters specify the ingress and egress routers which are the end-points of our reservation. In
addition, we use these parameters to identify the interface of the ingress where the flow state is to
be instantiated. The next five parameters, srcaddr, dst.addr, src.port, dst.port, and proto,
respectively, identify the flow. Finally, the last two parameters specify the requested reservation (in
Kbps), and the buffer size to be allocated at the ingress for this flow (in packets).

To terminate a reservation, we use the following command:

config_dps 4 ingress egress src_addr dst_addr src_port dst_jport

The first parameter, the number 4, represents the code of the deletion operation. The other parame-
ters have the same meaning as in the previous command.

Finally, the command to update a reservation is virtually identical to setting-up a reservation. In
fact, this operation is implemented by tearing down the existing reservation, and creating a new one.

8.4.3 Monitoring

As described in Section 8.3, our implementation provides support for fine grained monitoring. To
start monitoring the traffic at a network interface, we use the following command:

141

config_dps 0 node next_node mon_node mon_port level

Again, the first parameter, the number 0 in this case, represents the operation code. The next two pa-
rameters are used to identify the interface that we want to monitor, while morunode and mon^port
represent the IP address (of the monitoring machine) and the port number where the log data is to
be transmitted. Finally, level specifies the sampling level. The routers probabilistically log one
packet out of 2level consecutive packets that arrive at the interface. To stop monitoring the traffic at
an interface, we use the same command, but with the second parameter set to 1, instead of 0.

8.5 Summary

In this chapter, we have presented a prototype implementation of our solution to provide guaranteed
and flow protection services in an IPv4 network. To the best of our knowledge this is the first imple-
mentation that provides these services in a core stateless network architecture. We have described
the operations performed by both edge and core routers on data and control paths, as well as an
approach that allows to efficiently encode the DPS state in the IP header by re-using some of the
existing fields. In addition, we have described two support tools that allow packet level monitoring
in real-time, and easy system configuration.

We have implemented our solution in FreeBSD 2.2.6, and deployed it in a local test-bed that
consists of four PC routers and up to 16 hosts. The results presented in Sections 3.2 and 5.5 show
that (1) the overhead introduced by our solution is acceptable, i.e., we can still saturate the 100
Mbps, (2) the overhead increases very little with the number of flows (at least when the number of
flows is no larger than 100), and (3) the scheduling mechanisms protect the guaranteed traffic so
that its performance is not affected by the best-effort traffic.

While implementing this prototype we have learned two valuable lessons. First, the monitoring
tool proved very useful not only in debugging the system, but also in promptly finding unexpected
causes of experiment failures. For example, in more than one instance, we were able to easily
discover that we do not achieve the expected end-to-end performance, simply because the source
does not correctly generate the traffic due to unexpected interference (such as someone inadvertently
using the same machine). Second, the fact that our solution does not require the maintenance of
distributed per flow state has significantly simplified our implementation. In particular, we were able
to implement the entire functionality of the control path, which is notoriously difficult to implement
and debug in the case of the stateful solutions such as RSVP [128], in just a couple of days.

However, our implementation suffers from some limitations that we hope to address in the fu-
ture:

• The current test-bed is a local area network. We would like to perform similar tests in a larger
internetwork environment such as CAIRN [16].

• All the experiments were performed with synthetic loads. In the future, we would like to
experiment with real applications such as video conferencing or distributed simulations.

• The test-bed consists of only PC workstations. We would like to implement our algorithms in
commercial routers.

142

• The current configuration tool does not offer any protection. Anyone who knows the ad-
dress of our routers and the command format, can send ICMP messages to re-configure the
routers. Providing an enciyption mechanism to avoid malicious router re-configuration would
be useful.

143

144

Chapter 9

Conclusions and Future Work

In this chapter, we conclude the dissertation by (1) summarizing our contributions, (2) exposing
some fundamental limitations of current solutions, and (3) proposing several directions for future
work.

9.1 Contributions

One of the most important reasons behind the overwhelming success of the Internet is the stateless
nature of its architecture. The fact that routers do not need to maintain any fine grained information
about traffic makes the Internet both scalable and robust. However, these advantages come at a
price: today's Internet provides only a minimalist service, the best effort datagram delivery. As the
Internet evolves into a global communication infrastructure that is expected to support ä plethora
of new applications such as IP telephony, interactive TV, and e-commerce, the existing best effort
service will no longer be sufficient. As a result, there is an urgent need to provide more powerful
services such as guaranteed services and flow protection.

Over the past decade, there has been intense research toward achieving this goal. Two classes of
solutions have been proposed: those maintaining the stateless property of the original Internet (e.g.,
Differentiated Services), and those requiring a new stateful architecture (e.g., Integrated Services).
While stateful solutions can provide more powerful and flexible services such as per flow guaranteed
services, and can achieve higher resource utilization, they are less scalable than stateless solutions.
In particular, stateful solutions require each router to maintain and manage per flow state on the
control path, and to perform per flow classification, scheduling, and buffer management on the data
path. Since there can be a large number of active flows in the Internet, it is difficult, if not impossible,
to implement such solutions in a scalable fashion. On the other hand, while stateless solutions are
much more scalable, they offer weaker services.

The main contribution of this dissertation is to bridge the long-standing gap between stateful
and stateless solutions. To achieve this goal, we have described a novel technique called Dynamic
Packet State (DPS). The key idea behind DPS is that, instead of having routers maintain per flow
state, packets carry the state. In this way, routers are still able to process packets on a per flow
basis, despite the fact that they do not maintain per flow state. Based on DPS, we have proposed a
network architecture called Stateless Core (SCORE) in which core routers do not maintain any per
flow state. Yet, by using DPS, we have demonstrated that, in a SCORE network, it is possible to

145

provide services which are as powerful and flexible as the services provided by a stateful network.
In particular, we have developed complete solutions to address some of the most important problems
in today's Internet:

• Flow protection (Chapter 4) We have proposed the first solution to provide protection on a
per flow basis without requiring core routers to maintain any per flow state. To achieve this
goal, we have used DPS to approximate the functionality of a reference network in which
every router implements the Fair Queueing [31] discipline with a SCORE network in which
every router implements a novel algorithm, called Core-Stateless Fair Queueing (CSFQ).

• Guaranteed services (Chapter 5) We have developed the first solution to provide per flow
delay and bandwidth guarantees. We have achieved this goal by using DPS to emulate the
functionality of a stateful reference network in which each router implements litter Virtual
Clock [126] on the data path, and per flow admission control on the control path in a SCORE
network. To this end, we have proposed a novel scheduling algorithm, called Core-Jitter
Virtual Clock (CJVC), that provides the same end-to-end delay bounds as Jitter Virtual Clock,
but, unlike Jitter Virtual Clock, does not require routers to maintain per flow state.

• Large spatial granularity service (Chapter 6) We have developed a stateless solution that
allows us to provide relative differentiation between traffic aggregates over large numbers
of destinations. The most complex mechanism required to implement this service is route-
pinning, for which traditional solutions require routers to either maintain per flow state, or
maintain state that is proportional to the square of the number of edge routers. By using DPS,
we are able to significantly reduce this complexity. In particular, we propose a route-pinning
mechanism that requires routers to maintain state which is proportional only to the number of
egress routers.

While the above solutions have many scalability and robustness advantages over existing state-
ful solutions, they still suffer from robustness and scalability limitations in comparison. System
robustness is limited by the possibility that a single edge or core router may malfunction, inserting
erroneous information in the packet headers, severely impacting performance of the entire network.
In Chapter 7, we propose an approach, called "verify-and-protect", that overcomes these limitations.
We achieve scalability by pushing the complexity all the way to the end-hosts, thus eliminating the
distinction between edge and core routers. To address the trust and robustness issues, all routers
statistically verify that the incoming packets are correctly marked. This approach enables routers to
discover and isolate misbehaving end-hosts and routers.

To demonstrate the compatibility of our solutions with the existing protocols, we have presented
the design and prototype implementation of the guaranteed service in IPv4 networks. In Chapter 8
we propose both efficient state encoding algorithms, as well as an encoding format for the proposed
solutions.

The SCORE/DPS ideas have already made an impact in both research and industrial commu-
nities. Since we have published the first papers [101, 104], several new and interesting results
have been reported. They include both extensions and improvements to the original CSFQ algo-
rithm [18, 25, 111], and generalizations of our solution to provide guaranteed services [129, 130].
In addition, DPS-like techniques have been used to develop new types of applications such as IP

146

traceback [91]. Furthermore, we observe that it is possible to extend the current Differentiated Ser-
vice framework [32] to accommodate algorithms using Dynamic Packet State. The key extension
needed is to augment each Per Hop Behavior (PHB) with additional space in the packet header for
storing PHB specific Dynamic Packet State [107]. Such a paradigm will significantly increase the
flexibility and capabilities of the services that can be built with a Diffserv-like architecture.

9.2 Limitations

While in this thesis we have shown that by using the DPS technique it is possible to implement some
of the most representative Internet services (for which previous solutions required stateful networks)
in a SCORE network, one important question still remains: What are the limitations of SCORE/DPS
based solutions? More precisely, is there any service implemented by stateful networks that cannot
be implemented by a SCORE network? In this section, we informally answer these questions.

In a stateful router, each flow is associated a set of state variables such as the length of a flow's
queue and the deadline of the packet at the head of the flow's queue. In addition, a router maintains
some global state variables such as buffer occupancy or utilization on the output link. A router
processes a packet based on both the per flow state and the global state stored at the router. As an
example, upon a packet arrival, a router checks whether the buffer is full, and if not, discards the
packet at the tail of the longest queue to make room for the new packet.

In contrast, in SCORE, a core router processes packets based on the state carried in packet
headers, instead of per flow state (as these routers do not maintain any such state). Thus, in or-
der to emulate the functionality of a stateful router, a stateless router has to reconstruct the per
flow state from the state carried in the packet headers. The question of what are the limitations of
SCORE/DPS based solutions reduces then to the question of what types of per flow state cannot be
exactly reconstructed by core routers. We are aware of two instances in which current techniques
cannot reconstruct the per flow state accurately:

1. The state of a flow depends on the behavior of other competing flows. Intuitively, this is
because it is very hard, if not impossible, to encode the effects of this dependence in the packet
headers. Indeed, this would require a router to know the future behavior of the competing
flows at the next router before updating the state in the packet headers.

Consider the problem of exactly emulating the Fair Queueing (FQ) discipline. Recall that
FQ is a packet level realization of a bit-by-bit round robin: if there are n backlogged flows,
FQ allocates 1/n of the link capacity to each flow. In the packet system, a flow is said to be
backlogged if it has at least one packet in the queue.

The challenge of implementing FQ in a stateless router is that the number of backlogged
flows, and therefore the service received by a flow, is a highly dynamic parameter, i.e., it
can change every time a new packet arrives or departs. Unfortunately, it is very hard if not
impossible for a router to accurately update the number of backlogged flows when such an
event occurs. To illustrate this point, consider a packet arrival event.

When a packet of an idle flow arrives, the flow becomes backlogged, and the number of back-
logged flows increases by one. Because the router does not maintain per flow state, the only

147

way it can infer this information is from the state earned in the packet header (as this is the
only new information that enters the system). However, inserting the correct information in
the packet header would require up-stream routers to know how many packets are in the flow's
queue when the packet arrives at the current node. In turn, this would require knowledge of
how much service the flow has received at the current node so far, as this determines how
many packets are still left in the queue. Unfortunately, even if we were using a feedhack
protocol to continuously inform the up-stream routers of the state of the current router, the
propagation delay poses fundamental limitations on the accuracy of this information. For
example, during the time it takes the information to reach the up-stream routers, an arbitrary
number of flows may become backlogged!

2. The state of a flow depends on parameters that are unique to each router. Intuitively, this is
because it is very hard to reconstruct these parameters at each router given the limited space
in the packet headers.

Consider a router that implements the Weighted Fair Queueing (WFQ) scheduling discipline.
Similar to FQ, WFQ is a realization of a weighted bit-by-bit round robin: a flow i with weight
Wi receives {m/Y,jeBwj) of the lmk capacity, where B is the set of backlogged flows.
Assume that the flow has a different weight at every router along its path. Then, each packet
has to encode all these weights in its header. Unfortunately, in the worst case, encoding
these weights requires an amount of state proportional to the length of the path, which is not
acceptable in practice.

Not surprisingly, these limitations are reflected in our solutions. The first limitation is the main
reason why Core Stateless Fair Queueing is only able to approximate, not emulate, the Fair Queue-
ing discipline. Similarly, it is the main reason why our per flow admission control solution uses
an upper bound of the aggregate reservation, instead of the actual aggregate reservation (see Sec-
tion 5.4). Finally, our decision to use a non-work conserving discipline such as Core-Jitter Virtual
Clock to implement guaranteed services is precisely because of this limitation. In particular, the
fact that the service received by a flow under a non-work conserving discipline is not affected by
the behavior of the competing flows, allows us to broke the dependence between the flow state and
the behavior of the competing traffic. This makes it possible to compute the eligible times and the
deadlines of a packet at all core routers, as soon as the packet arrives at the ingress router. The
potential downside of a non-work conserving discipline is the inability of a flow to use additional
resources made available by inactive flows.

As a result of the second limitation, we only consider the cases in which a flow has the same
reserved bandwidth or weight at all routers along its path through a SCORE domain. In the case of
providing guaranteed services, this restriction can lead to lower resource utilization, as it is difficult
to efficiently match the available resources at each router with the flow requirements.

In summary, as a result of these limitations, our SCORE/DPS based solutions cannot exactly
match the performance of traditional stateful solutions. In spite of this, as we have demonstrated
by analysis and experimental results, our solutions are powerful enough to fully implement some of
the most popular per flow network services.

148

9.3 Future Work

In the next sections, we identify several research directions for future work. Whenever possible, we
try to emphasize the main difficulties and possible solutions to address the proposed problems.

9.3.1 Decoupling Bandwidth and Delay Allocations

As described in Chapter 5, our solution to provide guaranteed services associates a single parameter
to each flow: the flow's reserved rate. While we can provide both per flow delay and bandwidth
guarantees by appropriately setting the flow reserved rates, the fact that we are restricted to only one
parameter may lead to inefficient resource utilization.

To illustrate this point, consider a flow that sends traffic at a constant rate r, and has fixed size
packets of length I. In this case, the worst case delay experienced by a packet at one router is about1

l/R, where R is the flow's bandwidth reservation. Intuitively, this is because in an idealized model
in which the flow traverses only dedicated links of capacity R, it takes a router exactly l/R time
to transmit a packet of size I. Assume that the flow requests a per hop delay no larger than D. To
meet this requirement, the router has to allocate a bandwidth R, such that l/R < D, or alternatively
R > l/D. In addition, R should be no smaller than the arrival rate of the flow r. As a result, for a
flow with the arrival rate of r and a per hop delay bound of D, a router has to allocate a bandwidth
of at least R = max(//Z), r). Consider a 64 Kbps audio flow that uses 1280 bit packets, and has
a per hop delay budget of D = 5 ms. To meet this delay requirement, the flow needs to reserve at
least R, = l/D = 1280 bit/5 ms = 256 Kbps, which is four times more than the flow's rate! Thus,
using only one parameter can result in serious resource underutilization.

In the stateful world, several solutions have been proposed to address this problem [90, 106,
124]. A future direction would be to emulate these solutions in the SCORE/DPS framework. The
problem is that current solutions to decouple bandwidth and delay allocations use at least two pa-
rameters to specify a flow reservation. This significantly complicates both the data and the control
path implementations. For example, admission control requires checking whether a two-piece linear
function representing the new reservation ever exceeds an n-piece linear function representing the
available link resources (capacity), where, in the worst case, n represents the number of flows [90].
Thus, storing the representation of the available capacity requires an amount of state proportional to
the number of flows, which is unacceptable for a stateless solution. A possible approach to alleviate
this problem would be to restrict the values taken by the parameters that characterize flow reserva-
tions. The challenge is doing this without compromising the flexibility offered by decoupling the
bandwidth and delay allocations.

9.3.2 Excess Bandwidth Allocation

Our solution to provide guaranteed services is based on a non-work conserving scheduling algo-
rithm, i.e., CJVC. As a result, even if the network is completely idle, a guaranteed flow will receive
no more than its reserved rate. While this service is appropriate for many applications such as IP

1 More precisely the worst case delay isl/R + lmax/C, where lmax represents the maximum length of any packet that
traverses the link, and C represents the link capacity. The term lmax/C accounts for the fact that the packet transmission
is not preemptive. However, since in general C>r,we ignore this term here.

149

telephony, other applications such as video streaming would prefer a more flexible service in which
they can opportunistically take advantage of the unused bandwidth to achieve better quality. In
the domain of stateful solutions, there are several algorithms including variants of Weighted Fair
Queueing [10, 48, 79], and Fair Service Curve [106] that provide the ability to share the excess
(unused) bandwidth.

In this context, it would be interesting to develop stateless algorithms that are able to achieve
excess bandwidth sharing, while still, providing guaranteed services. As discussed in Section 9.2, the
main problem is that it is very hard for DPS algorithms such as CJVC to adapt to very rapid changes
of excess bandwidth available at core routers. In the case of CJVC this is because the scheduling
parameters are computed when the packet arrives at the ingress router, a point at which it is very hard
if not impossible to accurately predict what will be the excess bandwidth when the packet arrives
at a particular core router. There are at least two general approaches to alleviate this problem: (1)
use a feedback mechanism similar to LIRA to inform egress routers about the excess bandwidth
available at core routers, and (2) have core routers compute packet scheduling parameters based
on both the state earned by the packet headers and some internal state maintained by the router.
The main challenge of the first approach is to balance the freshness of the information maintained at
ingress routers regarding the excess bandwidth inside the network with the overhead of the feedback
mechanism. The main challenge of the second approach is to maintain the bandwidth and delay
guarantees without increasing the scheduling complexity. This is hard because the complexity of
algorithms such as CJVC depend directly on the buffer size (see Section 5.3.3), and the buffer size
at core routers will significantly increase as a result of allowing flows to use excess bandwidth [79].

9.3.3 Link Sharing

While most of the previous research directed at providing better services in packet switching net-
works have focused on providing guaranteed services or protection for each individual flow, several
recent works [11, 39, 92] have argued that it is also important to support hierarchical link-sharing
service.

In hierarchical link-sharing, there is a class hierarchy associated with each link that specifies
the resource allocation policy for the link. A class represents a traffic stream or some aggregate
of traffic streams that are grouped according to administrative affiliation, protocol, traffic type, or
other criteria. Figure 9.1 shows an example class hierarchy for a 45 Mbps link that is shared by two
organizations, Carnegie Mellon University (CMU) and University of Pittsburgh (U. Pitt). Below
each of the two organization classes, there are classes grouped based on traffic types. Each class is
associated with its resource requirements, in this case, a bandwidth, which is the minimum amount
of service that the traffic of the class should receive when there is enough demand.

There are several important goals that the hierarchical link-sharing service aims to achieve.
First, each class should receive a certain minimum amount of resource if there is enough demand.
In the example, CMU's traffic should receive at least 25 Mbps of bandwidth during a period when
the aggregate traffic from CMU has a higher arrival rate. Second, at each level of the hierarchy,
active children should be able to use the excess bandwidth made available by the inactive children.
In the case when there is no audio or video traffic from CMU, the data traffic from CMU should be
able to use all the bandwidth allocated to CMU (25 Mbps). Finally, we should be able to provide

150

45 Mbps

Distinguished
lecture

Distinguished
lecture

Figure 9.1: An Example of Link-Sharing Hierarchy.

both bandwidth and delay guarantees to leaf classes, eventually by decoupling the bandwidth and
delay allocations. In the example, the CMU Distinguished Lecture video and audio classes are two
leaf classes that require both bandwidth and delay guarantees.

In short, hierarchical link-sharing aims to provide (1) bandwidth and delay guarantees at leaf
classes, (2) bandwidth guarantees at interior classes, and (3) excess bandwidth distribution among
children classes. Due to the service complexity, it should come as no surprise that all current solu-
tions require routers to maintain per class state [11, 39, 92]. A natural research direction would be
to implement the link-sharing service in a SCORE network. Providing such a service is challenging
because we have to deal with both limitations discussed in Section 9.2: the first limitation makes it
difficult to provide excess bandwidth distribution; the second limitation makes it difficult to encode
the reservation and the position of each ancestor class the packet belongs to at each router along
its paths. A possible solution would be to come up with "reasonable" restrictions that allow effi-
cient state encoding without significantly compromising the flexibility and the utilization offered by
existing stateful solutions.

9.3.4 Multicast

The solutions presented in this dissertation were primarily designed for unicast traffic. An inter-
esting direction for future work would be to extend them for multicast. In the case of CSFQ this
is straightforward: since packet replication does not affect the flow rate along an individual link,
when a router replicates a packet, it just needs to copy the DPS state into the replica headers. In
contrast, extending our guaranteed service solution to support multicast would be more difficult.
Part of the challenge would be to come up with acceptable service semantics. For example, do we
want to delay all packets by the same amount no matter what paths they traverse, or do we want to

151

achieve the minimum delay on each individual path? Do we want to allocate the minimum band-
width that is available to all receivers, or do we want the ability to allocate different bandwidths
on different paths? One important observation that simplifies the problem is that in all traditional
multicast solutions, at least the branching routers in the multicast tree have to maintain per group
state. By leveraging this state, it would be possible to update the DPS state canned by the packets as
a function of the branch they follow. In theory, this will allow us to provide service differentiation
on a per path basis.

Another future direction in the context of multicast would be to use DPS to implement the
multicast service itself. A straightforward approach would be for the sender to insert the list of all
receivers' IP addresses in the packet headers. This would eliminate the need for routers to keep
any multicast state: when a packet arrives, a router inspects the list of the addresses in the packet
header and replicates the packet to each output port that corresponds to an address in the list. While
simple, this solution has a fundamental limitation: the state canned by the packets increases with the
number of receivers. In a group with hundreds of receivers, we can easily reach the situation when
we have to transmit more DPS state than data information! Note that this problem is an instance
of the second limitation discussed in Section 9.2, i.e., per group (flow) routing state maintained by
traditional multicast schemes is unique for each router. A possible solution would be to find a more
efficient encoding of the forwarding state, and, eventually, partition it between the packet headers
and core routers.

9.3.5 Verifiable End-to-End Protocols

As described in Chapter 7, the "verify-and-protect" approach can overcome some of the robustness
and scalability limitations of the SCORE/DPS framework. We believe, however, that this is a far
more general and powerful approach that can be used to design new network services and protocols.
Usually, whenever we implement a network service without support from the network, we make the
(implicit) assumption that users cooperate. For example, the recently proposed endpoint admission
control algorithms assume that (1) each user probes the network to detect the level of congestion,
and then (2) it sends traffic only if the level of congestion is sufficiently low [14]. Unfortunately, in
an economic environment like today's Internet, there is no strong incentive for users to cooperate.
For example, a user may choose to send traffic, even if the congestion level is high, in the hope that
it will force other users to give up and release their bandwidth. A natural way to create the incentive
for users to cooperate is to punish them if they don't. However, this requires the ability to identify
a malicious user, i.e., the ability to verify its behavior. We believe that verifiability should be a key
property of any end-to-end protocol, and not an afterthought as it happens today. In this context, we
believe that designing protocols and algorithms with verifiable behaviors is a very important topic
for future work.

9.3.6 Incremental Deployability

SCORE/DPS solutions described in this dissertation require changes to all routers within a network
domain. This is a serious limitation that may delay or even preclude the deployment of SCORE/DPS
solutions in the Internet. An important direction for future work is to alleviate or remove, if possible,
this limitation.

152

One approach would be to develop solutions that require only a subset of routers to be changed.
One example would be to study what levels of bandwidth and delay guarantees can be provided by
a network in which only the edge nodes are changed. The key difficulty would be to coordinate
the actions of these routers. Furthermore, this coordination would need to happen at a veiy small
time scale, because of the rapid changes in traffic characteristics. DPS represents an ideal starting
point to the development of such mechanisms, as it allows the exchange of traffic information at the
smallest possible granularity: on a per packet basis.

Another approach would be to build an overlay network consisting of high performance sites,
called Point-of-Presence's (PoPs), connected by high quality virtual links. An example would be
to provide per flow bandwidth allocation by using the Premium service to guarantee capacity along
each virtual link, and a CJVC like algorithm to manage this capacity among the competing flows.
Another example would be to monitor the available bandwidth along each virtual link, and use
this information together with a CSFQ-like algorithm to provide fair bandwidth allocation across
the overlay network. One possible approach to improve the quality of the virtual links would be
to construct the overlay such that each virtual link traverses no more than one ISP. There are two
reasons for this restriction. First, since the traffic between any two neighbor PoPs traverses only one
IPS, and since an ISP has generally full control of its resources, it would be much easier to provide
a strong semantic service. Second, it would be much easier to verify, and therefore to enforce, the
service agreement between the neighbor PoPs and the ISP that handles their traffic. If one of the
two PoPs detects that the service agreement is broken, then it can conclude that this is because the
ISP that carries the traffic does not honor its agreement. In contrast, had the traffic between the two
PoPs traverse more that one ISP, it would have been very hard to identify which ISP was to blame.

9.3.7 General Framework

In this dissertation we have demonstrated by examples that it is possible to provide network ser-
vices with per flow semantics in a stateless network architecture. A very interesting theoretical
question is: what is the class of algorithms and services that can be emulated or approximated in
the SCORE/DPS framework? In Section 9.2 we informally discuss two of the limitations of the cur-
rent solutions. The next step would be to develop a theoretical framework that precisely formulates
the limitations and answers the previous question. Such a framework would provide us with a much
better understanding of what we can and what we cannot do in the SCORE/DPS framework. A
related question of practical interest is: can we come up with a general methodology that allows us
to transform a stateful network into a stateless network while preserving its functionality?

9.4 Final Remarks

In this dissertation, we have presented the first solution that can provide services as powerful and as
flexible as the ones implemented by a stateful network using a stateless network. To illustrate the
power and the generality of our solution, we have implemented three of the most important services
proposed in the context of today's Internet: providing guaranteed services, differentiated services,
and flow protection. While it is hard to predict the exact course of research in this area, we believe
that the door has been opened to many new and challenging problems of great practical importance
and theoretical interest.

153

154

Bibliography

[1] ATM User-network Interface (UNI) signalling specification version 4.0, July 1996. The ATM
Forum Technical Committee, af-sig-0061.000.

[2] Avici terabit switch router. Product Brochure, http://www.avici.com/products/index.html.

[3] R. Y. Awdeh and H. T. Mouftah. Survey of ATM switch architectures. Computer Networks
and ISDN Systems, pages 1567-1613, September 1995.

[4] O. Babaoglu and S. Toueg. Non-blocking atomic commitment. Distributed Systems, S.
Mullender (ed.), pages 147-168, 1993.

[5] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Aggregation of RSVP for IP4 and IP6
reservations. Internet Draft, draft-baker-rsvp-aggregation-OO.txt.

[6] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management architecture
for Internet hosts. In Proceedings of ACM SIGCOMM'99, pages 175-188, Cambridge, MA,
September 1999.

[7] M. Baldi and Y. Ofek. End-to-end delay analysis of videoconferencing over packet switched
networks. IEEE/ACM Transactions on Networking, 4(8):479-492, August 2000.

[8] A. Banerjea and B. Mah. The real-time channel administration protocol. In Proceedings of
NOSSDAV'91, pages 160-170, Heidelberg, Germany, November 1991. Springer-Verlag.

[9] J.C.R. Bennett, D.C. Stephens, and H. Zhang. High speed, scalable, and accurate implemen-
tation of packet fair queueing algorithms in ATM networks. In Proceedings of IEEE ICNP
'97, pages 7-14, Atlanta, GA, October 1997.

[10] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In Proceedings
ofIEEEINFOCOM'96, pages 120-128, San Francisco, CA, March 1996.

[11] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. IEEE/ACM
Transactions on Networking, 5(5):675-689, October 1997.

[12] U.Black. ATM: Foundation for Broadband Networks. Prentice Hall, 1995.

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differentiated services, October 1998. Internet Draft, draf-ietf-diffserv-arch-02.txt.

155

[14] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang. Endpoint admission control:
Architectural issues and performance. In Proceedings of ACM SIGCOMM'OO, pages 57-69,
Stockholm, Sweden, September 2000.

[15] R. Brown. Calendar queues: A fast O(l) priority queue implementation for the simulation
event set problem. Communications of the ACM, 31 (10): 1220-1227, October 1988.

[16] Collaborative advanced interagency research network (cairn), http://www.cairn.net/.

[17] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan. A frame-
work for multiprotocol label switching, November 1997. Internet Draft, draft-ietf-mpls-
framework-02.txt.

[18] Z. Cao, Z. Wang, and E. Zegura. Rainbow fair queueing: Fair bandwidth sharing without
per-flow state. In Proceedings ofINFOCOM'99, Tel-Aviv, Israel, March 2000.

[19] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng, P. Steenkiste, E. Takahashi, and H. Zhan. Dar-
win: Resource management for value-added customizable network services. In Proceedings
of IEEE ICNP'98, pages 177,196, AUSTIN, TX, October 1998.

[20] A. Chamy. An algorithm for rate allocation in a packet-switching network with feedback.
Master's thesis, MIT, CS Division, May 1994.

[21] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing with a
combined input output queued switch. In Proceedings ofINFOCOM'99, pages 1169-1178,
New York, CA, March 1999.

[22] D. Clark. The design philosophy of the DARPA internet protocols. In Proceedings of ACM
SIGCOMM'88, pages 106-114, Stanford, CA, August 1988.

[23] D. Clark. Internet cost allocation and pricing. Internet Economics, L. W. McKnight and J. P.
Bailey (eds.), pages 215-252, 1997.

[24] D. Clark and J. Wroclawski. An approach to service allocation in the Internet, July 1997.
Internet Draft, http://diffserv.lcs.mit.edu/draft-clark-diff-svc-alloc-00.txt.

[25] A. Clerget and W. Dabbous. Tag-based fair bandwidth sharing for responsive and
unresponsive flows, December 1999. Technical report RR-3846, INRIA, France,
http://www.inria.fr/RRRT/RR-3846.html.

[26] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

[27] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic evidence and
possible causes. In Proceedings of ACM SIGMETRICS 96, pages 160-169, Philadelphia, PA,
May 1996.

[28] R. Cruz. Quality of service guarantees in virtual circuit switched network. IEEE Journal of
Selected Area on Communications, 13(6): 1048-1056, August 1995.

156

[29] R. L. Cruz. SCED+: Efficient management of quality of service guarantees. In Proceedings
ofINFOCOM'98, pages 625-642, San Francisco, CA, 1998.

[30] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast routing
lookups. In Proceedings of ACM SIGCOMM'97, pages 3-14, Cannes, France, September
1997.

[31] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.
In Journal of Internetworking Research and Experience, pages 3-26, October 1990. (Also in
Proceedings of ACM SIGCOMM'89, pages 3-12).

[32] Y. Bemet et. al. A framework for differentiated services, November 1998. Internet Draft,
draft-ietf-diffserv-framework-01 .txt.

[33] S. Fahmy, R. Jain, S. Kalyanaraman, R. Goyal, and B. Vandalore. On determining the fair
bandwidth share for ABR connections in ATM networks. In Proceedings of IEEE ICC '98,
volume 3, pages 1485-1491, Atlanta, GA, June 1998.

[34] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area net-
works. IEEE Journal of Selected Area on Communications, 8(3):368-379, April 1990.

[35] N. Figueira and J. Pasquale. An upper bound on delay for the VirtualClock service discipline.
IEEE/ACM Transactions on Networking, 3(4):399,408, August 1995.

[36] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the internet.
IEEE/ACM Transactions on Networking, 7(4):458-472, August 1999.

[37] S. Floyd and V. Jacobson. Random early detection for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397-413, July 1993.

[38] S. Floyd and V. Jacobson. The synchronization of periodic routing messages. In Proceedings
of ACM SIGCOMM'93, pages 33^14, San Francisco, CA, September 1993.

[39] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet net-
works. IEEE/ACM Transactions on Networking, 3(4):365-386, August 1995.

[40] R. Frederick. Network video (nv). Software available via ftp://ftp.parc.xerox.com/net-
research.

[41] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing (CIDR): An address
assignment and aggregation strategy, September 1993.

[42] L. Georgiadis, R. Guerin, V. Peris, and K. Sivarajan. Efficient network QoS provisioning
based on per node traffic shaping. IEEE/ACM Transactions on Networking, 4(4):482-501,
August 1996.

[43] D. W. Glazer and C. Tropper. A new metric for dynamic routing algorithms. IEEE Transac-
tion on Communication, 38(3):360-367, March 1990.

157

[44] S. Golestani. A stop-and-go queueing framework for congestion management. In Proceed-
ings of ACM SIGCOMM'90, pages 8-18, Philadelphia, PA, September 1990.

[45] S. Golestani. A self-clocked fair queueing scheme for broadband applications. In Proceedings
of IEEE INFOCOM'94, pages 636-646, Toronto, CA, June 1994.

[46] S. J. Golestani. A Unified Theoiy of Flow Control and Routing in Communication Networks.
PhD thesis, MIT, Department of EECS, May 1980.

[47] P. Goyal, S. Lam, and H. Vin. Determining end-to-end delay bounds in heterogeneous net-
works. In Proceedings of NOSSDAV95, pages 287-298, Durham, New Hampshire, April
1995.

[48] P. Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A scheduling algorithm for
integrated services. In Proceedings of ACM SIGCOMM 96, pages 157-168, Palo Alto, CA,
August 1996.

[49] R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-based QoS requests, November
1997. Internet Draft, draft-guerin-aggreg-rsvp-OO.txt.

[50] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory access speeds.
In Proceedings ofINFOCOM'98, pages 1240-1256, San Francisco, CA, 1998.

[51] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Proceedings
of ACM SIGCOMM'99, pages 147-160, Cambridge, MA, September 1999.

[52] E.L. Hahne. Round-robin scheduling for max-min fairness in data networks. IEEE Journal
of Selected Area on Communications, 9(7): 1024-1039, September 1991.

[53] G. Hardin. The tragedy of the commons. Science, 162:1243-1248, 1968.

[54] C. Hedrick. Routing information protocol, June 1988. Internet RFC 1058.

[55] Juha Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB group,
January 1999. Internet Draft, draf-ietf-diffserv-af-04.txt.

[56] Internet assignment number authority (iana). IP Option Numbers, http://www.isi.edu/in-
notes/iana/assignments/ip-parameters.

[57] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM'88,
pages 314-329, August 1988.

[58] V. Jacobson and S. McCanne. LBL whiteboard (wb). Software available via
ftp://ftp.ee.lbl.gov/conferencing/wb.

[59] V. Jacobson and S. McCanne. Visual audio tool (vat). Software available via
ftp://ftp.ee.lbl.gov/conferencing/vat.

[60] Van Jacobson and K. Poduri K. Nichols. An expedited forwarding PHB, November 1998.
Internet Draft, draf-ietf-diffserv-phb-ef-01.txt.

158

[61] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan. ERICA switch algo-
rithm: A complete description, August 1996. ATM Forum/96-1172.

[62] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based admission control
algorithm for integrated services packet networks. In Proceedings of SIGCOMM'95, pages
2-13, Boston, MA, September 1995.

[63] C. Kalmanek, H. Kanakia, and S. Keshav. Rate controlled servers for very high-speed net-
works. In Proceedings of IEEE Globecom, pages 300.3.1 - 300.3.9, San Diego, California,
December 1990.

[64] G. Karlsson. Asynchronous transfer of video. IEEE Communication Magazine, pages 118-
126, August 1996.

[65] L. Kleinrock. Queueing Systems. John Wiley and Sons, 1975.

[66] T.V. Lakshman and D. Stiliadis. High speed policy-based packet forwarding using efficient
multi-dimensional range matching. In Proceedings of ACM SIGCOMM'98, pages 203-214,
Vancouver, Canada, September 1998.

[67] D. Lin and R. Morris. Dynamics of random early detection. In Proceedings of ACM SIG-
COMM'97, pages 127-137, Cannes, France, October 1997.

[68] Q. Ma, P. Steenkiste, and H. Zhang. Routing high-bandwidth traffic in max-min fair share
networks. In Proceedings of ACM SIGCOMM'96, pages 206-217, Palo Alto, CA, October
1996.

[69] S. McCanne. Scalable Compression and Transmission of Internet Multicast Video. PhD
thesis, University of California at Berkeley, Computer Science Division, December 1996.
Technical Report UCB/CSD-96-928.

[70] S. McCanne and V. Jacobson. vie: A flexible framework for packet video. In Proceedings of
ACM Multimedia'95, pages 511-522, San Francisco, CA, November 1995.

[71] J. M. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the arpanet. IEEE
Transaction on Communication, 28(5):711-719, May 1980.

[72] D. R. Morrison. Patricia — practical algorithms to retrieve information coded in alphanu-
meric. Journal of the ACM, pages 514—534, October 1968.

[73] J. Moy. OSPF version 2, July 1991. Internet RFC 1247.

[74] J Nagle. On packet switches with infinite storage. IEEE Transactions On Communications,
35(4):435-438, April 1987.

[75] K. Nichols, S. Blake, F. Baker, and D. L. Black. Definition of the differentiated services
field (DS field) in the IPv4 and IPv6 headers, October 1998. Internet Draft, draf-ietf-diffserv-
header-04.txt.

159

[76] K. Nichols, V. Jacobson, and L. Zhang. An approach to service allocation in the Internet,
November 1997. Internet Draft.

[77] Network traffic packet header traces. URL: http://moat.nlanr.net/Traces/.

[78] Ucb/lbnl/vint network simulator - ns (version 2). http://www-mash.cs.berkeley.edu/ns/.

[79] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control - the
single node case. ACM/IEEE Transactions on Networking, l(3):344-357, June 1993.

[80] V. Paxon and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226-244, June 1995.

[81] V. Paxon and S. Floyd. Why we don*t know how to simulate the Internet. In Proceed-
ings of the Winder Communication Conference, December 1997. http://ftp.ee.lbl.gov/nrg-
papers.html.

[82] S. Shenker R. Braden, D. Clark. Integrated services in the Internet architecture: An overview,
June 1994. Internet RFC 1633.

[83] K. Ramakrishnan, D. Chiu, and R. Jain. Congestion avoidance in computer networks with
a connectionless network layer. In Proceedings of ACM SIGCOMM'88, pages 303-313,
Stanford, CA, August 1988.

[84] R. Rejaie, M. Handley, and D. Estrin. Quality adaptation for congestion control video play-
back over the Internet. In Proceedings of ACM SIGCOMM'99, pages 189-200, Cambridge,
MA, September 1999.

[85] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based congestion control
mechanism for realtime streams in the Internet. In Proceedings of INEOCOM'99, pages
1337-1345, New York, NY, 1999.

[86] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4), March 1995. Internet RFC 1771.

[87] L. Roberts. Enhanced PRCA (proportionat rate control algorithm), August 1994. ATM
Forum/94-0735RL

[88] L. G. Roberts. Internet growth trends, http://www.ziplink.net/

[89] T. Rutkowski. Bianual strategic note. Center for Next Generation Internet, February 2000.
http://www.ngi.org/trends/TrendsPR0002.txt.

[90] H. Sariowan, R.L. Cruz, and G.C. Polyzos. Scheduling for quality of service guarantees via
service curves. In Proceedings of the International Conference on Computer Communica-
tions and Networks (ICCCN) 1995, pages 512-520, September 1995.

[91] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP trace-
back. In Proceedings ofACMSIGCOMM'00, pages 295-306, Stockholm, Sweden, Septem-
ber 2000.

160

[92] S. Shenker, D. C. Clark, and L. Zhang. A scheduling service model and a scheduling archi-
tecture for an integrated services packet network, 1993. ftp://parcftp.parc.xerox.com/pub/net-
research/archfin.ps.

[93] S. Shenker, C. Partridge, and R. Guerin. Specification of guaranteed quality of service,
September 1997. Internet RFC 2212.

[94] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. In Proceed-
ings ofSIGCOMM'95, pages 231-243, Boston, MA, September 1995.

[95] K. Y. Siu and H. Y. Tzeng. Inteligent congestion control for ABR service in ATM networks,
July 1994. Technical Report No. 1102, ECE, UC Irvine.

[96] V. Srinivasan, S. Sun, and G. Varghese. Packet classification using tuple space search. In
Proceedings ofACMSIGCOMM'99, pages 135-146, Cambridge, MA, September 1999.

[97] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast scalable algorithms for level
four switching. In Proceedings of ACM SIGCOMM'98, pages 191-202, Vancouver, Canada,
September 1998.

[98] D.C. Stephens, J.C.R. Bennett, and H.Zhang. Implementing scheduling algorithms in high
speed networks. IEEE Journal of Selected Area on Communications: Special Issue on Next-
generation IP Switches and Router, 17(6): 1145—1158, June 1999.

[99] D. Stilliadis and A. Varma. Efficient fair queueing algorithms for packet-switched networks.
IEEE/ACM Transactions on Networking, 6(2):175-185, April 1998.

[100] D. Stilliadis and A. Verma. Latency-rate servers: A general model for analysis of traffic
scheduling algorithms. IEEE/ACM Transactions on Networking, 6(2): 164-174, April 1998.

[101] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: Achieving approximately
fair bandwidth allocations in high speed networks. In Proceedings ACM SIGCOMM'98,
pages 118-130, Vancouver, September 1998.

[102] I. Stoica and H. Zhang. Exact emulation of an output queueing switch by a combined input
output queueing switch. In Proceedings ofTWQoS'98, pages 218-224, Napa, CA, 1998.

[103] I. Stoica and H. Zhang. LIRA: A model for service differentiation in the Internet. In Pro-
ceedings ofNOSSDAV'98, pages 115,128, London, UK, July 1998.

[104] I. Stoica and H. Zhang. Providing guaranteed services without per flow management. In
Proceedings of ACM SIGCOMM'99, pages 81-94, Cambridge, MA, September 1999.

[105] I. Stoica and H. Zhang. Providing guranteed services without per flow management, May
1999. Technical Report CMU-CS-99-133.

[106] I. Stoica, H. Zhang, and T.S.E. Ng. A hierarchical fair service curve algorithm for link-
sharing, real-time and priority service. In Proceedings of ACM SIGCOMM'97, pages 162—
173, Cannes, Frances, September 1997.

161

[107] I. Stoica, H. Zhang, S. Shenker, R. Yavafkar, D. Stephens, Y. Bernet, Z. Wang, F. Baker,
J. Wroclawski, and R. Wilder C. Song. Per hop behaviors based on dynamic packet states,
February 1999. Internet Draft, draft-stoica-diffserv-dps-OO.txt.

[108] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhury. Buffer management schemes for
supporting TCP in gigabit routers with per-flow queueing. IEEE Journal on Selected Areas
in Communication, August 1999.

[109] A. Tanenebaum. Computer Networks. Prentice Hall, 1996.

[110] D. Tse and M. Grosslauser. Measurement-based call admission control: Analysis and simu-
lation. In Proceedings ofINFOCOM'97, pages 981-989, Kobe, Japan, 1997.

[Ill] N. Venkitaraman, J. Mysore, R. Srikant, and R. Barnes. Stateless prioritized fair queuing,
August 2000. Internet Draft, draft-venkitaraman-diffserv-spfq-00.txt.

[112] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing delay jitter bounds in packet switching
networks. In Proceedings ofTricomm'91, pages 35^4-6, Chapel Hill, North Carolina, April
1991.

[113] C. A. Waldspurge. Lottery and Stride Scheduling: Flexible Proportional -Share Resource
Management. PhD thesis, MIT, Laboratory of Computer Science, sep 1995. MIT/LCS/TR-
667.

[114] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share resource
management. In Proceedings ofOSDI 94, pages 1-12, November 1994.

[115] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed routing. In
Proceedings ofACMSIGCOMM'97, pages 25-36, Cannes, France, September 1997.

[116] Z. Wang. User-share differentiation (USD) scalable bandwidth allocation for differentiated
services, May 1998. Internet Draft, draft-wang-diff-serv-usd-00.txt.

[117] W. E. Weihl. Transaction-Processing Techniques. Distributed Systems, S. Mullender (ed.),
pages 329-352; 1993.

[118] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through high-
variability: Statistical analysis of ethernet Ian traffic at the source level. In Proceedings of
ACMSIGCOMM'95, pages 100-113, Boston, MA, August 1995.

[119] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for vbr
video packet-switching networks: Fundmental limits and practical trade-offs. IEEE/ACM
Transactions on Networking, 4(3):352-362, June 1996.

[120] D.E. Wrege and J. Liebeherr. A near-optimal packet scheduler for QoS networks. In Pro-
ceedings ofINFOCOM'97, pages 576-583, Kobe, Japan, 1997.

[121] J. Wroclawski. Specification of the controlled-load network element service, September
1997. RFC 2211.

162

[122] J. Yo. Scalable routing design principles, July 2000. Internet RFC 2791.

[123] H.Zhang. Service Disciplines for Integrated Services Packet-Switching Networks. PhD
thesis, University of California at Berkeley, Computer Science Division, November 1993.
Technical Report UCB/CSD-94-788.

[124] H. Zhang. Service Disciplines For Guaranteed Performance Service in Packet-Switching
Networks. Proceedings of the IEEE, 83(10): 1374-1399, October 1995.

[125] H. Zhang and D. Ferrari. Rate-controlled static priority queueing. In Proceedings of IEEE
INFOCOM'93, pages 227-236, San Francisco, California, April 1993.

[126] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Net-
works, 3(4):389^12, 1994.

[127] L. Zhang. Virtual Clock: A new traffic control algorithm for packet switching networks. In
Proceedings ofACMSIGCOMM'90, pages 19-29, Philadelphia, PA, September 1990.

[128] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource reser-
vation protocol. IEEE Communications Magazine, 31(9):8—18, September 1993.

[129] Z.-L. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Decoupling QoS control from core routers: A
novel bandwidth broker architecture for scalable support of guaranteed services. In Proceed-
ings ofACMSlGCOMM'00, pages 71-83, Stockholm, Sweden, September 2000.

[130] Z.-L. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Virtual time reference system: A unifying
scheduling framework for scalable support of guaranteed services. To appear in IEEE Journal
on Selected Areas in Communication: Special Issue on Internet Quality of Services, 2000.

163

164

Appendix A

Performance Bounds for CSFQ

In this appendix we give the proof of Theorem 1 (Section 4.3.4). Recall that for simplicity we make
the following assumptions: (1) the fair share a is fixed, (2) there is no buffering and therefore the
drop probability is given by Eq. (4.2), and (3) when a packet arrives, a fraction of that packet equal
to the flow's forwarding probability is transmitted. The proof is based on two intermediate results
given in Lemmas 1 and 2, respectively. Lemma 1 gives the upper bound for the excess service
received by a flow with weight w during an arbitrary time period in which the estimated rate of the
flow, as given by Eq. (4.3), does not exceed the flow's fair rate, i.e., wa. Similarly, Lemma 2 gives
the upper bound for the excess service received by a flow during an arbitrary period in which the
flow's estimated rate is never smaller than its fair rate.

First, we give two well known inequalities that are subsequently used in the proofs:

x
1-e-
xe~a

> 1, x > 0, (A.l)

< 1, x > 0. (A.2)
i — e ~

Lemma 1 Consider a link with a normalized fair rate a, and a flow with weight w. The excess
service received by the flow during any interval I = [t',t"), when its estimated rate r does not
exceed its fair rate ra = wa, i.e., r(t) < wa, V< € I, is bounded above by

raK + lmax, (A3)

where lmax represents the maximum length of a packet.

Proof. Without loss of generality assume that exactly n packets of the flow are received during the
interval I. Let U e I, (1 < i < n) be the arrival time of the i-th packet, and let k denote its length.
According to Eq (4.3), we have

ri = (l-e-Ti/K)^ + e-T^Kri.1, 1 < t < n, (A.4)
■Li

where Tj = tj — £j_i, and r*o represents the initial estimated rate. If TQ > 0, to is assumed to be the
time when the last packet was received before t'. Otherwise, if ro = 0 then we take to — — oo.

Since by hypothesis n < ra (I < i < n) it follows that all packets are forwarded and therefore
the total number of bits sent during the interval / is YA=I h- Thus, our problem can be reformulated
tobe

165

MEM> <A-5) max
Y/=i /

subject to

r,<r(l. l<i<n. (A.6)

From Eq. (A.4) it follows that

i>= ,
1_

,
;'V,/A-

T- 2-?;-n- (A-7)

The above equation does not apply for i = 1, since it is not well defined for the case in which
r-o = 0. Recall that in this case we take to = — oc, and therefore T\ = oc. Further, define

F{ri.r-2 r7)) = E/'- (A-8)

Our goal then is to maximize F(r'i.7'2, ?'„). By plugging/, fromEq. (A.7)intoF(ri,7'2,... ,rn)
and taking the derivate with respect to r-, (2 < i < ?;,) we obtain

dF(ri.r.2....,r„) T, T,+]e~r^n<
 ~> = i TTK ~~ 1 T—77T' 2 < ?, < «• (A.9)

and
aF(r-? '•"'=HW- <A-I0> ar7, 1 - e y"/A

By using Eqs. (A.l) and (A.2) (and after making substitutions T, —> .%'iif, T,-+i —> x^-K", and
rn —> x-zK) we have

 ^^f — > 0. 2 < ?: < n. (A.l 1)
orj

Thus, F(ri, r-2, • • •, rn) is maximized when T2. r;j,..., r„ achieve their maximum value, which in
our case is ra. Consequently, we have

n

F(rl7r2,---,rn) = £/, (A.12)
7=2

« —T IK r,- — rt-\e J,/n

. 9 l-e-7'./A- J'
1 = 2

^ !-e-T2,K ^ + E l_e-r,,K T*
7 = 3

-To IK n r2-rle ^'n ^
= 1-C-7VA- T2 + ?oEr'

7=3

e-T2/A- n

= (r'2 _ n) l_e-T2/A-^ + r2T2 + 7* E T<
?=3

n

i=2

< Ax0 + r0 (*"-*')•

166

where the next to last inequality follows from the fact that r\ >0,r2<ra, and by using Eq. (A.2)
after substitution T<i -> xK.

By using Eq. (A. 12), and the fact that l\ < lmax, we get

n
Y,h = h+ F{ri,r-2, ■ ■ ■ ,rn) < lmax + Kra + ra(t" - t'). (A.13)
i=\

Since (t" — t')ra represents exactly the service to which the flow is entitled during the interval I, it
follows that the excess service is bounded by lmax + raK. 0

Lemma 2 Consider a link with a normalized fair rate a, and a flow with weight w that sends at a
rate no larger than R., where R, > rn. Next consider an interval I = [£', t") such that i! represents
the time just after a packet has arrived, and during which the rate estimator r is never smaller than
rQ = wa, i.e., r(t) > rn, \/t G /. Then, the excess service received by the flow during I is bounded
above by

raKln—. (A. 14)
r

Proof. Again, assume that during the interval I the flow sends exactly n packets. Similarly, let ti be
the arrival time of the i-th packet, and let l\ denote its length. Since we assume that when the packet
i arrives, ^fraction of that packet equal to flow i's forwarding probability, i.e., rQ/ri is transmitted,
the problem reduces to find an upper bound for

n
£/z-, (A.15)

where ra <ri < R, 1 < i < n.
From Eq. (A.4), we obtain

h ri-ri-1e-
T*/K

— = —n -T-IK\
Ji (A.16)

(n-i\ e-TilK

Note that unlike Eq. (A.7), the above equation also applies for i = 1. This because we are
guaranteed that there is at least one packet received before t' and therefore T\ is well defined, i.e.,
from the hypothesis we have T\ = t\ — to = t\ — t'.

Further, by making substitution x —> Ti/K in Eq. (A.2) we have

e-Ti/K
Ti<K, Ti>0. (A.17)

1 - e-TilK

From the above inequality and Eq. (A.16) we obtain

K, 1 < i < n, (A.18) l^<Tl+(l-
n V

and further

167

t7 = tTi + K±(l-r-^)<(t''-^) + K±(l-r-^.). (A.19)

Next, since the arithmetic mean is no smaller than the geometric mean, i.e., (YD'=\ xi) /" >
(n"=i •'?•■/;)1/?', where x, > 0 (1 < i < ?i), we have

v / n \ '/"
7V-1 \ V^ 7'/-l ^ / TT 7'/-l

-»('-£)"") 4" G '
where the last inequality follows from the hypothesis, i.e., ra < r, < R (0 < i < n).

By replacing x —>■ (R/r0)
1^' in the well known inequality ln(.r) > 1 — 1/./;, (.;: > 1), we obtain

n(l - (rn/R)^n) < ln(7i/r(l), ?t > 1. Thus, Eq. (A.19) becomes

£(l-!2=i)<b3. «A.2„

Finally, from Eqs. (A.19) and (A.21) we obtain

£/,•- < rn(«"-0+at(l-^) (A.22)

< ra{t" - t') + raKln —

Since (t" — t')ra represents exactly the number of bits that the flow is entitled to send during the
interval J, the proof follows. D

Theorem 1 Consider a link with a nonnalized fair rate a, and a flow with weight w. Then, the
excess service received by a flow with weight w, that sends at a rate no larger than R, is bounded
above by

rQÄ-(l + //j—)+/niax, (A.23)

where ra — aw, and lmax represents the maximum length of the packet.

Proof. Assume the flow becomes active for the first time at t„. Let fy, be the time when its rate
estimator exceeds for the first time ra, i.e., r(^) > rQ and r(t) < ra, Vt < t/,. If such a time
tf, does not exist, according to Lemma 1, the excess service received by the flow is bounded by
raK + lmax, which concludes the proof for this case. In the following paragraphs, we consider the
case when % exists.

Next, we show that the service received by the flow is maximized when r(t) > rQ, \/t > fy,. The
proof is by contradiction. Assume there is an interval I' = [t', t") C /, such that t' > %, and that
r(t) < ra, (f <t < t"). Then using an identical argument as in Lemma 1, it can be shown that the

168

service that the flow receives during /' increases when r(t) = rQ, V t £ I'. The only change in the
proof of Lemma 1 is that now Eq. (A.7) will also apply for % = 1, as according to the hypothesis
the estimated rate just before t' (i.e., ro in Lemma 1) is greater than zero; more precisely rg > ra.
Further, by including l\ in the definition of F(-) (see Eq. (A.8)) we show that F(-) is increasing in
each of its arguments r^, 1 < i < n.

Thus, the service received by the flow is maximized when the estimated rate of the flow is no
smaller than rQ after time £&. But then, according to Lemma 2, the excess service received by the
flow after tb is bounded by '

raK\n—. (A.24)

Similarly, from Lemma 1 it follows that the excess service received by the flow during the
interval [ta, tb) is bounded above by

TaK + Imaxi (A.25)

and therefore by combining (A.24) and (A.25) the total excess service is bounded above by

raK (l + In—] + Imax- (A.26)

D

'Without loss of generality here we assume that tb represents the time just after r was evaluated as being smaller than
ra for the last time. Since this coincides with a packet arrival Lemma 2 applies.

169

170

Appendix B

Performance Bounds for Guaranteed Services

B.l Network Utilization of Premium Service in Diffserv Networks

Premium service provides the equivalent of a dedicated link of fixed bandwidth between edge nodes
in a Diffserv network. In such a service, each premium flow has a reserved peak rate. In the data
plane, ingress nodes police each premium service traffic flow according to its peak reservation rate.
Inside the Diffserv domain, core routers put the aggregate of all premium traffic into one scheduling
queue and service the premium traffic with strict priority over best effort traffic. In the control
plane, a bandwidth broker is used to perform admission control. The idea is that by using very
conservative admission control algorithms based on worst case analysis, together with peak rate
policing at ingress nodes and static priority scheduling at core nodes, it is possible to ensure that all
premium service packets incur very small queueing delay.

One important design question to ask is how conservative does the admission control algorithm
need to be? In other words, what is the upper limit on the utilization of the network capacity that can
be allocated to premium traffic if we want the premium service to achieve the same level of service
assurance as the guaranteed service, such that the queueing delay of all premium service packets is
bounded by a fixed number even in the worst case?

For the purpose of this discussion, we use flow to refer to a subset of packets that traverse the
same path inside a Diffserv domain between two edge nodes. Thus, with the highest level of traffic
aggregation, a flow consists of all packets between the same pair of ingress and egress nodes. Note
that even in this case, the number of flows in a network can be quite large as this number may
increase quadratically with the number of edge nodes.

Let us consider a domain consisting of 4 x 4 routers with links of capacity C. Assume that
the fraction of the link capacity allocated to the premium traffic is limited to 7. Assume also that
all flows have equal packet sizes, and that each ingress node shapes not only each flow, but also
the aggregate traffic at each of its outputs. Figure B.l (a) shows the traffic pattern at the first core
router along a path. Each input receives 12 identical flows, where each flow has a reservation of
7C/I2 = C/48. Let T be the transmission time of one packet, then as shown in the Figure, the
inter-arrival time between two consecutive packets in the each flow is 48r, and the inter-arrival time
between two consecutive packets in the aggregate flow is AT.

Assume the first three flows at each input are forwarded to output 1. This will cause a burst
of 12 packets to arrive at output 1 in a 8T long interval and the last packet of the burst to incur
an additional delay of ST. NOW assume that the next router receives at each input a traffic pattern

17L

11T
1 1 211 10 9876543 2 1

! 1 t t 1

~>

3

4

1

2

3

4

t f
f 1
1 t f

8T a)

delav = 3T

111

ttt 1 1
<ii

I!

i»
1! 3 3

Iff (!) 4 4 -1

lilililllll

delav = 97J

21 b)

Figure B. 1: Per-hop worst-case delay experienced by premium traffic in a Diffserv domain, (a) and (b) show
the traffic pattern at the first and a subsequent node. The black and all dark grey packets go to the first output:
the light grey packets go to the other outputs.

similar to the one generated by output 1 of the first core router, as shown in Figure B.l(b). In
addition, assume that the last three flows from each input burst are forwarded to output 1. This will
cause a burst of 12 packets to arrive 1 at output in a 2T long interval and the last packet in the burst
to incur an additional delay of 9T. Thus, after two hops, a packet is delayed by as much as 12T.

This pattern can be repeated for all subsequent hops.
In general, consider a k x k router, and let n be the number of flows that traverse each link. For

simplicity, assume that 7 > l/k. Then it can be shown that the worst case delay experienced by a
packet after h hops is

D = [n-l H><" x fc-i
1)11 : T + ll.T, (B.l)

where the first term is the additional delay at the first hop, the second term is the additional delay at
all subsequent hops, and the last term accounts for the packet transmission time at each hop. As a
a numerical example, let C = 1 Gbps, a packet size of 1500 bytes, k = 16, 7 = 10%, 11 = 1500
and h = 15. From here we obtain r = 12 //sec, and a delay D of over 240 ms. Finally, if 7 < l/k,
it can be shown that it will take only [logt(l/7)] hops to achieve a continuous burst. For example,
for 7 = 1% and k = 16, it takes only two hops to obtain a continuous burst.

The above example demonstrates that low network utilization and traffic shaping at ingress
nodes alone are not enough to guarantee a "small" worst-case delay for all the premium traffic. This
result is not surprising. Even using a per flow scheduler like Weighted Fair Queueing (WFQ), will
not help to reduce the worst case end-to-end delay for all packets. In fact, if all flows in the above
example are given the same weight, the worst case delay under WFQ is hnr, which is basically the
same as the one given by Eq. (B.l). However, the major advantage of using WFQ is that it allows us
to differentiate among flows, which is a critical property as long as we cannot guarantee a "small"
delay to all flows. In addition, WFQ can achieve 100% utilization.

172

B.2 Proof of Theorem 2

In this appendix we show that a network of CJVC servers provides the same end-to-end delay
guarantees as a network of Jitter-VC servers. In particular, in Theorem 2 we show that the deadline
of a packet at the last hop in both systems is the same. This result is based on Lemmas 4 and 5
which give the expressions of the deadline of a packet at the last hop in a network of Jitter-VC,
and a network of CJVC servers, respectively. First, we present a preliminary result used in proving
Lemma 4.

Lemma 3 Consider a network ofJitter-VC servers. Let Ttj denote the propagation delay between
hops j and j + 1, and let Tj be the maximum transmission time of a packet at node j. Then for any
j > 1 and i, k > 1 we have

dij+i-d$j-Tj-nj>d%ij-d^_1-Tj-1-irj-1. (B.2)

Proof. The proof is by induction on k. First, recall that by definition gf ■ = d\^ + Tj — s^ (see
Table 5.1), and that for j > 1, a^ = sf:

J_1 + itj-\. From here and from Eqs. (5.1) and (5.2) we
have then

dlj = max«, + gt^dlf) + £ = max«rl + r^ + irj-ud^1) + 1 (B.3)
' i I i

Basic Step. For k = 1 and any j > 1, from Eq. (B.3) we have trivially d}j = dy_i + TJ-\ + ttj-\ +
lj/ri, Vj > 1, and therefore d]j - d\tj_x - TJ_I - -KJ-I = ij/n, Vj > 1.

Induction Step. Assume Eq. (B.2) is true for k. Then we need to show that

max(4+1 + TJ + Kj,dlj+l) - max(4+l1 + Tj-i + TTJ_I, d^) - T3 - Ttj > (B.4)

max(d£t±x + Tj_i + TTJ-I,4J) - max(djt^2 + TJ_2 + TTJ-2,
di,j-i) ~ Tj-i ~ *j-i,

where the second inequality follows after using Eq. (B.3). Next consider two cases: whether dij^.l +

TJ-I + -Kj-i < d![j or not. Assume d^x + TJ_I + 7TJ_I < dy. From Eq. (B.4) and from the
induction hypothesis we obtain

<Si-<^-^-^ = max^ + r. + TT,,^)- (B.5)

max(djti1 + TJ-I + TTj-i, dlj) - r,- - TTJ

= max(df+1 + TJ + itj, dlj+l) - dhij - TJ - TTJ

> di,j+i — d\j — Tj — Ttj (induction hypothesis)

> di,j - 4,j-l - Ti-1 - TTj-l

> di,j - max(^+l2 + Tj-l + 7Tj_i, d\j_x) - Tj_l - TTj-i

= max(djtl1 + Tj-x + 7Tj_i, 4J) -

max(dj+i2 + Tj_2 + 7TJ--2,4j-i) - Ti-i ~ fj-i
jfc+i jfc+i _ _

= di,j ~ dij-i~ Tj-i_7rJ-i•

173

Next, assume that
dU-i +7j-_i+7rj_] >dk

y (B.6)

From here and by using Eq. (B.3) and Eq. (B.4) we have

dijli-du'-Tj-vj = max(^+l+T?+7rJ.4H.,)- (B.7)

Uiaxfd-^, + Tj_i + TTj-i,^) - Tj - 7Tj

= max(4+' + r, + TTJ-, rf?J+i) - rfjji, - r,-, - vrM - r? - TT,

= rfft' _ max(^+|, + Tj_, +7Tj_i. 4;) (Eq. (B.3))

= J— (Eq.(B.3))

- >+i <+!, - max(<^2 + T,_2 + TTJ_2,<7_])

= max(r/^, + Tj_, + 7TJ_I . rf^-) - T,-_ , - 7TJ_, - (Eq. (B.6))

i-i) niax(f/f+i2 + Tj_2 + TTJ-2, r/-'_y-

This completes the proof. D

Lemma 4 77?<? deadline of any packet pk, k > 1, at the last hop h in a network ofJitter-VC servers
is

(lk h~1 lk\
d\h = max 4, + h^ + J2 (T»> + *»>)■ 4V + - • (B-8)

Proof. Let j* > 1 be the last hop for which dy._i + fj'-\ + TTJ*-I < ^'T-1- We consider two
cases whether j* exists or not.

Case 1. (j* does not exist) From Eq. (5.1) we have ekj = </•'■_] + T,_I + itj-\, Vj > 1. From here
and by using Eq. (5.2) we obtain

lk /,_1

Because we assume that j* does not exist we also have d,kh = ek
h + lk jri > dkJt

l + lk /vi, which
concludes the proof of this case.

Case 2. (j* exists) In this case we show that j* = h. Assume this is not true. Then we have
ei,j - di,j-i + Tj-i + Kj-i,Vj > j*. By using Eq. (5.2) we obtain

4,h = e?j. + (h - j* + 1)^ + £ (^ + *"»)■ (B.10)
'7

174

On the other hand, by the definition of j* and from Eqs. (5.1) and (5.2) we have

lk

d\r = max(4j-_i + Tj._i + 7Tj._i, dk~}) + -j- (B.ll)

> <r-i + TJ*-i+7ri*-i + f-
0
n

As a result we obtain dkj. — dkj,_l — Tj*-i — ^'"-l > Vri- By iteratively applying Lemma 3 we
have

lk

di,m+i-dlm-Tm-ntn>4j.-d$j._1-Tj.-1-irj.-1 >-*-, Vm>j* (B.12)
' i

From Eq. (B.12) we obtain

h-\

E (<m+l " 4m - TV» - *m) > (/J - ?){dkij. - 4.--1 - T,-.-l " TTj.-i) (B.13)
771=7*

where the right-hand term can be expressed as

h-\ h-\

E (4m+l - 4,m - T™ ~ %) = <**/. - <j* ~ E (T™ + *"»)■ <B-14)
m=j* m=j*

By combining Eq. (B.13) and Eq. (B.14) we get

4h > 4J. + (h-j*)l-i-+Yi(Trn + nm) (B.15)
i 'I m=j*

= e$j. +(h- j* + l)-i- + E (r™ + ^)v
'7 m=j*

But this inequality contradicts Eq. (B.10) and therefore proves our statement, i.e., j* = h. Thus,
ef/i = 4ft1- From here and from Eqs. (5.1) and (5.2) we get

<h-<h+
lf = dk;h

l + lf. (B.16)

Now, from Eq. (5.1) it follows trivially that

ekj = max^j.! + TJ-I + 7Tj_i, 4J-I) > 4i-i + rJ-i + ^'-i' ■?' ^ L <B-17)

By iterating over the above equation and then using Eq. (5.2) we get

<Ä><l+^-+E(Tm + 7Tm), (B.18)
Vl m=l

which, together with Eq. (B.16), lead us to Eq. (B.8).
This completes the proof of the lemma. D

175

Lemma 5 The deadline ofany packet p\, k > 1, at the last hop h in a network of CJVC sewers is

(lk ''"' lk\
d>ih = max e^ + h->- + E (r,„ + TT,,,). 4j,1 + ^ . (B.19)

V 7' ,»=i 7'7

Proof. We consider two cases whether Sf = 0 or not.

Case 1. (of = 0) From Eqs. (5.2) and (5.6) it follows that

4h = 4i +'' - + E (r"' +7r»')• (B-2°)
7' m = l

On the other hand, by the definition of tff (see Eq. (5.3) and Eq. (5.4)) we have (j'j = 4,-j-x +

Tj-i + 7Tj_] + 5k > d\'j\ Vy > 1. From here and from Eq. (5.2) we obtain

lk

,k > ,k-\ , '■, 4j,>4j' + ~- (B.21)

From this inequality and Eq. (B.20), Eq. (B.19) follows.

Case 2. (Sk > 0) By using Eqs. (5.2) and (5.10) we obtain

</, = <! + /'■- + (/»- i)tf + E (r»< +*»<) <B-22)
m = l

= el +h±+[(h - 1)6?-' + (h - 1)^—^ - el + <7' + 'J-
ik / /A--1 /A- /A-1

k , /A' , (n, t\xk-l , /•!, i\'?' ~li „A- , „A--I '•

h-l

E (T»' + ^m
m=\

ifc-1 /'-I ;A

' m = 1

Since 8k > 0, by using again Eq. (5.2) and (5.7) we get

4,h = 4,i + /i-f + (/i - Wi + E (T»< + w»
1 ■> „,-i

(B.23)
m = l

,* h-l

> eji + h-i- + E (T™ +
U m = \

which, together with Eq. (B.22), lead to Eq. (B.19). D

Theorem 2 The deadlines of a packet at the last hop in a network of CJVC servers is equal to the
deadline of the same packet in a corresponding network of Jitter-VC servers.

176

Proof. From Eqs (5.1) and (5.2) it is easy to see that in a network of Jitter-VC servers we have

d},h = el +hX+^(rm + 7rm). (B.24) n m=l

Similarly, in a network of CJVC servers, from Eqs. (5.1) and (5.7), and by using the fact that
5} = 0 (see Eq. 5.8), we obtain an identical expression for d\h (i.e., Eq. (B.24)).

Finally, since (a) the eligible times of all packets p\ at the first hop, i.e., efx (Vfe > 1), are
identical for both Jitter-VC and CJVC servers, and since (b) the deadlines of the packets at the last
hop, i.e., d\h (Vfe > 1), are computed based on the same formulae (see Eqs. (B.8), (B.19) and B.24),
it follows that dk

ih, (Vfc > 1) are identical in both a network of Jitter-VC, and a network of CJVC
servers. D

B.3 Proof of Theorem 3

To prove Theorem 3 (see Section 5.3.3) we prove two intermediate results: Lemma 9 which gives
the buffer occupancy for the case when all flows have identical rates, and Lemma 12 which gives
the buffer occupancy for arbitrary flow rates.

B.3.1 Identical Flow Rates

Consider a work-conserving server with an output rate of one, which is traversed by n flows with
identical reservations of 1/n. Assume that the time axis is divided in unit sized slots, where slot t
corresponds to the time interval [t, t + 1). Assume that at most one packet can be sent during each
slot, i.e., the packet transmission time is one time unit. Finally, assume that the starting times of
the backlogged periods of any two flows are uncorrelated. In practice, we enforce this by delaying
the first packet of a backlogged period by an amount drawn from a uniform distribution in the
range [tarrivahtarrivai + n)> where t arrival is the arrival time of the first packet in the backlogged
period. Note that according to Eq. (5.1), the eligible times of the packets of a flow during a flow's
backlogged interval are periodic with period n. Thus, without loss of generality, we assume that the
arrival process of any flow during a backlogged interval is periodic.

Let r(t',t") denote the number of packets received (i.e., became eligible) during the interval
[t',t"), and let s(t',t") denote the number of packets sent during the same interval. Note that
r(t', t") and s(t', t") do not include packets received/transmitted during slot t". Let q(t) denote the
size of the queue at the beginning of slot t. Then, if no packets are dropped, we have

q(t")=q(t') + r(t',t")-s(t',t"). (B.25)

Since at most one packet is sent during each time slot, we have s(t', t") < t" — t'. The inequality
holds when [£', t") belongs to a server busy period. A busy period is defined as an interval during
which the server's queue is never empty. Also, note that if t' is the starting time of a busy period
q(t') = 0.

The next result shows that to compute an upper bound for q(t), it is enough to consider only the
scenarios in which all flows are continuously backlogged.

177

Lemma 6 Let t\ be an arbitrary time slot during a server busy period that starts at time to. Assume
flow % is not continuously backlogged during the inteiral [to,t\). Then q(t\) can only increase if
flow i becomes continuously backlogged during [to. t\).

Proof. Consider two cases in which flow i is idle during the entire interval [/o, /i), and not.
If flow i is idle during [t.Q.t\), consider the modified scenario in which flow i becomes back-

logged at an arbitrary time t < t0, and remains continuously backlogged during [/0. ^i)■ In addition,
assume that the arrival patterns of all the other flows remain unchanged. As a result, it is easy to
see that in the modified scenario, the total number of packets received during [t-o-ti) can only in-
crease, while the starting time of the busy interval can only decrease. Let r', s', and q' denote the
corresponding values in the modified scenario. Then q'{h) > q(t0) = 0, r'(/,0. t\) > r(to,t[), and
s'(tQ, ti) = -s(*o,*i) = U - /,). From Eq. (B.25) it follows then that </'(/,) > </(/.,).

In the second case, when flow i is neither idle nor continuously backlogged during the interval
[to, t\), let t! denote the time when the last packet of flow i arrives during [U).t\). Next consider the
modified scenario in which flow f s packets anive at times: t' — na,...,/' — n. t'. i! + ?t....,/' + nb,
such that t! — na < to, and t\ < t' + nb. It is easy to see then that the number of packets of flow
i that anive during [/(). t\) is no smaller than the number of packets of flow i that arrive during the
same interval in the original scenario. By assuming that the arrival patterns of all the other flows
do not change, it follows that r'(to.t\) > r(to.t\). In addition, since at most t\ - to packets are
transmitted during [tQ,ti) we have .s'(tf0. t\) < t\ - t0. The inequality holds if, after changing the
arrival pattern of flow i, the server is no longer busy during the entire interval [to, t\). In addition,
we have q'{t0) > 0, and from the hypothesis q(t0) = 0. Finally, from Eq. (B.25) we obtain
(l'{t\) > (i{ti), which concludes the proof of the lemma. D

As a consequence, in the remainder of this section, we limit our study to a busy period in which
all flows are continuously backlogged.

Let t\ be the time when the last flow becomes backlogged. Let to be the latest time no larger than
t\ when the server become busy, i.e., it has no packet to send during [/0 - 1, to) and is continuously
busy during the interval [to,ti + 1). Then we have the following result.

Lemma 7 If all flows remain continuously backlogged after time t\, the server is busy for any time
t>t0.

Proof. By the definition of to, the server is busy during [to-1\). Next we show that the server is also
busy for any t j > 0.

Consider a flow that becomes backlogged at time t', Since its arrival process is periodic it follows
that during any interval [t! - n + i, t' + i), \/i > 0, exactly one packet of this flow arrives. Since
after time t\ all n flows are backlogged, exactly n packets are received during [ti — n + i, t\ + i),
Vz > 0. Since at most n packets are sent during each of these intervals, it follows that the server
cannot be idle during any slot i. O

Consider a buffer of size s. Our goal is to compute the probability that the buffer will overflow
during an arbitrary interval [t0, to + d). From Lemma 7 it follows that since the server is busy during
[to,to+d), exactly d packets are transmitted during this interval. In addition, since the starting times
of the backlogged periods of different flows are not correlated, in the remainder of this section we
also assume that the starting times of a flow's backlogged period is not correlated with the starting

178

time, t0, of a busy period. Thus, during the interval [t0, *o + d), a flow receives \d/n] packets with
probability p(d) = d/n - [d/n\, and [d/n\ with probability I—p. Since this probability is periodic
with period n it will suffice to consider only intervals of size equal to at most n. Consequently, we
will assume d <n. The probability to receive one packet during [to, to + d) is then

p(d) = -. (B.26)
n

Let p(m; d) denote the probability with which exactly m packets are received during the time
interval [to, to + d), where

p{m;d) = (^)p(d)m(l-p(d))n-m. (B.27)

Now, let P(x > s, u) denote the probability with which the queue size exceeds s at time to + u.
Since the server is idle at t0 and busy during [to, to + u), from Eq. (B.25), it follows that the server's
queue overflows when more than u + s packets are received during [to,to + u). Thus, we have

P(x>s,u)= J2 P^u)= E [i)p(uy(l-p(u))n-\ (B.28)

The next result computes P(x > s,u).

Lemma 8 The probability that a queue of size s overflows at time to + u is bounded by

where ß(n) = (n/e)l+^ll2n\

Proof. From Eq. (B.27) we obtain

p(m + l;U) = _^-.!i^.p(m;«), (B.30)
1 — p(u) m + 1

By plugging the above equation and Eq. (B.26) into Eq. (B.28) we obtain

P(X>s,u) = p(u + s;u) ± (g ^)(~y~U_S (B-31)

" fn-u-s u y-u-s

i=u+s+l

Next, it can be easily verified that for any positive reals a, b, and x, such that b — x > 0, we have

a b-x^(a + b-x\\ {B32)

a + x b \a + b + x

179

By taking a = u, b = n — u, x = s, Eq. (B.31) becomes

P(x>s,u) < p{u + s;u) J2 —T1 <p(u + .s:u)Y, -— (B.33)
j' = ?/ + ,s + l x ' 7 = 0

< p(u + .s; M)
4.S77

Next, it remains to bound p(u + .<?; it). From Eqs. (B.26) and (B.30) we have

Ä-1 / -x .S-l

p(u + s; u) = p(u: «) JJ ——- < I] — . (B.34)
r_,. \7i - it u + 1+1/ ~7, V'"■ + 1- ii — '»<) ?:=() v ,..,-/ ,.=0

By using Eq. (B.32) with a = u, b = n — it, and x — i, we obtain

P « + *;«=;>«;« II -T- =;"'■:« n—r^-—r i—0- (BJ5)

Again, by applying Eq. (B.32) to the pairs (?/. — i)/{n + ?') and (77 — .s + 1 + ?')/(n + .** — 1 — /),
V« < s/2, we have

/ N /,2n-(.s-l)\2" , , /1-(.S-1)/27I\
2ä

To bound p(u: u) we use Stirling inequalities [26], i.e., \/2im(n/e)n < n! < v/27m(n/e)"+('/]2"),
V?7 > 1. From here we have

' n \ \/2^(n/e)"+(1/l^)
< —, (B.37)

Kn - uj y/2iTu(u/e)v ^2n{n-u)((n - u)/e)n~v

I Vl 77"(?7/fi)1/12"
y 2ir(n — ii.)u uv(n, — u)n "

By combining Eqs. (B.26), (B.27) and (B.37), we obtain

p{u-v) < ß(n)J—^ < ß(n)J^-. (B.38)
y 2mi(n — u) V 2ir

where ß(n) = (77/e)1"^1/12") and the last inequality follows from the fact that n/({n — u)u) < 1,
for any u > 1, n > 2. By plugging the above result in Eq. (B.33) we obtain

P(x>s.u)<ß (n)\ — (- TTTT^) —; -■ (B.39)

D

180

Lemma 9 Consider n flows with identical rates and unit packet sizes. Then given a buffer of size
s, where

/ /Inn lne \ ,„ ,„

the probability that the buffer overflows during an arbitrary time slot when the server is busy is
asymptotically < e.

Proof. To compute the asymptotic bound for P(x > s, u) assume that s <C n. Since (1 — x)/(l +
x) ~ 1 — 2x and ln(l — x) ~ x, for x -> 0, and since (n + s)2/sn < n for n > s > 4, and
/?(n) < 1.102 for any n > 1, by using Eq. (B.29) we obtain1

\nP(x>s:u) ~ In (ß(n)\[^) + 2s "ln (| ~ ^ I jw^n) + lnn ~ ln4 (B-41>

~ In [ß{n)J—) + 2s • ln ^1 - ^-=—) + Inn - In4

~ In \ß(n)\—) -2s- hlnn-ln4
\ V 2n I n

s(?-l) s2

< -2-2-^ ^ + lnn~2(-l) + Inn.
n n

Using e to bound P(a; > s,u) leads us to

P(a: > s; u) < e => (B.42)

2(-l- —j +lnn<lne=>

'Inn lne
S>Wn(—- —-1

D
Next we prove a stronger result by computing an asymptotic upper bound for the probability

with which a queue of size s overflows during an arbitrary busy interval. Let Q(x > s) denote this
probability. The key observation is that since all flows have period n, the aggregate arrival traffic
will have the same period n. In addition, since during each of these periods exactly n packets are
received/transmitted it follows that the queue size at any time to + i ■ n + j is the same, \/i,j > 0.
Consequently, if the queue does not overflow during [io,*o + n)> tne queue will not overflow at
any other time t > t\ during the same busy period. Thus, the problem reduces to compute the
probability of queue overflowing during the interval [*o, to + n). Then we have the following result.

Corollary 1 Consider n flows with identical rates and unit packet sizes. Then given a buffer of size
s, where

s > yn(lnn-(lne)/2-l), (B.43)

the probability that the buffer overflows during an arbitrary busy interval is asymptotically < e.

'More precisely lnß(n)^l/{2n) - ln4 < -2.2081062

181

Proof. Let e' be the probability that a buffer of size s overflows at an instant t during the busy
interval [^o^o + <■')• Then the probability that the buffer overflows during this interval is smaller
than 1 — (1 — e7)" < u ■ e'. Now, recall that if the buffer does not overflow during [to, to + ?/,),
the buffer will not overflow after time to + n. Thus the probability that the buffer will not overflow
during an arbitrary busy period is less than ne'. Finally, let e = n ■ e'', and apply the result of
Lemma 9 for e', i.e.,

> ,,n('^:-^-l) = f (l»..-^-l|. (B.44,

D

B.3.2 Arbitrary Flow Rates

In this section we determine the buffer bound for a system in which packets are of unit size, but the
reservations can be arbitrary. The basic idea is to use a succession of transformations to reduce the
problem to the case in which the probabilities associated to the flows can take, at most, three distinct
values, and then to apply the results from the previous case when all reservations are assumed to be
identical.

Consider n flows, and let ?/,. denote the rate reserved by flow k, where

r?

X>* = 1- (B.45)
k=l

Consider again the case when all flows are continuously backlogged. Let to denote the starting
time of a busy period. Since the time when flow k becomes backlogged is assumed to be independent
of to, it follows that during the interval [to, to + d) flow k receives exactly [d ■ rk\ + 1 packets with
probability

Pk(d) = d-rk-[d-rk\, (B.46)

and [d ■ rk\ packets with probability 1 — Pk(d).
Let p(m; d) denote the probability with which the server receives exactly YJk=\ l^ • /"/,-J + in

packets during the interval [to, to + d). Then

p(m; d) = T/Z1 (Pi (d), p-2 (d),..., p„ (d)), (B.47)

where T™'(pi(d),p2(d),... ,pn(d)) is the coefficient of xm in the expansion of

f[(xPi(d) + (l-Pi(d))). (B.48)

Note that when all flows have equal reservations, i.e., r> = 1/n, 1 < k < n, Eq. (B.47) reduces to
Eq. (B.27).

By using Eq. (B.46) the number of packets received during [to, to + d) can be written as

n n n

J2 [d ■ rk\ + m = J2((l ■ n - Pk(d)) +m = d- ^pjt(d) + m. (B.49)
fe=l k=l A—1

182

Since to is the starting time of the busy period and since the server remains busy during [to, to + d),
from Eq. (B.25) it follows that q(t0 + d) = m - J2k=i Pk{d).

Similarly, the probability P(x > s, u) will overflow a queue of size s at time to + u is

n

p(x>s,u)= Y, P(*;«). (B-5°)
i=v+l

where v = T,k=iPk(u) + «•
Since in the following, pk(u) is always defined over [to, to + u) we will drop the argument from

the pk(uYs notation. Next, note that for any two flows k and I, p(m; u) can be rewritten as

p(m;u) =PkPiAkj(m) + {pk{l - pi) + (1 - pk)pi)Bkj{m) + (1 - pk)(l - pi)Ck,i{m),(B.51)

where pkpiAk)l, represents all terms in TJl
n(p1,p2,... ,pn) that contain pkpL, (pk{\ - pi) + (1 -

Pk)Pi)Bk,i represents all terms that contain either p/^1 -pt) or (l-pk)pi, and (1 -pk){l -pi)Ckj
represents all terms that contain (1 — pk)(l — pi).

From Eqs. (B.50) and (B.51), the probability a queue of size s will overflow at time to + u is
then

n

P(x>s,u) = Y p{i:u) (B.52)

= PkPi -Akj(v,n) + {pk{l -pi) + {l-pk)pi) -Bkii(v,n) +

(1 -Pfe)(! -Pi) -Ck,i(v,ri),

where Akyl(v,n) = £"=„+1 Au{i), BkJ{v,n) = E"=«+i-Bfc,/(i)'andC*,K«.n) = E?=»+i Ck,i{i),
respectively.

Our next goal is to reduce the problem of bounding P(x > s, u) to the case in which the flows'
probabilities take a limited number of values. This makes it possible to use the results from the
homogeneous reservations case without compromising the bound quality too much. The idea is
to iteratively modify the values of the flows' probabilities, without decreasing P(x > s,u). In
particular, we consider the following simple transformation: select two probabilities pk and pi and
update them as follows:

p'k = Pk-S, (B.53)

p'l = Pi + S,

where S is a real value such that 0 <p\,p'k < 1, and the new computed probability

P'(x>s,u) = pWrAkj{v,n) + (p'k(l-p'l) + (l-p'k)p'i)-BkAvin)+ (B.54)

(l-p;)(l-pi).Cfc,,(«,n).

is greater or equal to P(x > s,u).
It is interesting note that performing transformation (B.53) is equivalent to defining a new system

in which the reservations of flows k and I are changed to r'k and r[, respectively, such that p'k =
d ■ r'k — [d ■ r'k\, and p\ = d ■ r[— [d ■ r[\. There are two observations worth noting about this

183

system. First, by choosing rk = 77. — S/d and r\ = 77 + S/d, we maintain the invariant ^"=]
ri = 1-

Second, while in the new system the start time to of the busy period may change, this will not
influence P'(x > s, 11) as this depends only on the length of the interval [to, t.ü + u).

Next, we give the details of our transformation. From Eqs. (B.52), (B.53) and (B.54), after some
simple algebra, we obtain

P'(x > .s, u) - P(x > s. u) = S(Pk - p, - S)VkJ{v. n), (B.55)

where
V(i,j) = Au(i..j) - 2Bu(iJ) + Ckj(t.;j)). (B.56)

Recall that our goal is to choose S such that P'(x > .s.u) > P(x > .s). Without loss of
generality assume that pk > p\. We consider two cases: (1) if Vkj(v,v,) > 0, then S > 0 and
Pk > Pi + 8 (Ö < 0 ar,d Pk < Pi + Ü cannot be simultaneously true); (2) if Vk.i(v, n) < 0, then
either 5 > 0 and pk < pi + 5, or S < 0 and pk > pi + S.

Let Pmin = niiiiKK?! Ph and pmax = niaxi<,<7i Pi, respectively. Consider the following three
subsets, denoted U, V, and M, where U contains all flows k such that pk = ;>,„,„, V contains all
flows k such that pk = p„w.x- and M contains all the other flows. The idea is then to successively
apply the transformation (B.53) on p\,p2, ■ ■ ■ ,p„, until the probabilities of all flows in M become
equal. In this way we reduce the problem to the case in which the probabilities pk can take at most
three distinct values: pmjn, pmax, and PM, where ;>/,■ = PM, VA; G M. Figure B.2 shows the iterative
algorithm that achieves this. Lemmas 10 and 11 prove that by using the algorithm in Figure B.2,
Pi,P2, ■ ■ ■ ,Pn converge asymptotically to the three values.

while (\M\ > 1) do /* while size of M is greater than one */

pi = min ,-e A/(;>,•);

Pk = maxi€M (Pi)\
if(Dk,,(v,n)>0)

Pk =Pi = (Pk +Pi)/2;
else

S = max(pk - p„w.T,Pmin - Pi)-
Pk = Pk - S; pi =p,+S;

if (pi =p,„in)
M = M\{1};U = U\J{1};

\{(pk =Pmo.r)
M = M\{k};V = Yö{k};

Figure B.2: Reducing p\, p->,.. .pn to three distinct values.

Lemma 10 After an iteration of the algorithm in Figure B.2, either the size ofM decreases by one,
or the standard deviation of the probabilities in M decreases by a factor of at least (1 — ^n)•

Proof. The first part is trivial; if Df.,i(v, n) < 0 the size of M decreases by one. For the second
part, let p denote the average values of probabilities associated to the flows in M, i.e.,

?=^*f. (B.57)

184

The standard deviation associated to the probabilities in M is

dev=YJ(Pi-P?- (B.58)
i€M

After averaging probabilities pk and pi, standard deviation v changes to

dev' = dev + 2(^±^-p^ - (pk-p)2 - (Pl-p)2 = dev - ^. (B.59)

Since pk and pi are the lowest, and respectively, the highest probabilities in M we have (pi — p)2<
(pi — pk)2, Vi € M. From here and from Eqs. (B.58) and (B.59) we have

dev = Ysi^-P)2 < \M\{pi-Pk)
2 = 2\M\{dev - dev') =* dev' < dev ■ (l - -±-\ (B.60)

D

Lemma 11 Consider n flows, and let pi denote the probability associated with flow i. Then, by
using the algorithm in Figure B.2, the probabilities Pi (1 < i < n) converge to, at most, three
values.

Proof. Let e be an arbitrary small real. The idea is then to show that after a finite number of
iterations of the algorithm in Figure B.2, the standard deviation of p^'s (i € M) becomes smaller
thane.

The standard deviation for the probabilities of flows in M is trivially bounded as follows

dev = ^2 (Pi -P? < Yl (Pmax ~ Pmin)2 = \M\(pmax - pmin)2 < n{pmax ~ Pmin)2■ (B.61)
i£M ieM

Assume D).j(v:n) > 0 (i.e., M does not change) for n\ consecutive iterations. Then, by using
Lemma 10, it is easy to see that n\ is bounded above by N, where

dev.(1-J-)''<dev.(iiy = ^N = i n^;;> . (B.62)
V 2\M\) V 2nJ ln(l - l/(2n))

Since the above bound, N, holds for any set M, it follows that after nN iterations, we are guaranteed
that either set M becomes empty, a case in which the lemma is trivially true, or dev < e. D

Thus, we have reduced the problem to compute an upper bound for probability P(x > s, u) in
a system in which probabilities take only three values at time u: pmin, Pmax, and PM-

Next we give the main result of this section

Lemma 12 Consider n flows with unit packet sizes and arbitrary flow reservations. Then given a
buffer of size s, where

I /Inn lne \ ,„ ^^
a>^3n(—- —-l), (B.63)

the probability that the buffer overflows in an arbitrary time slot during a server busy period is
asymptotically < s.

185

Proof. Consider the probability, P(x > s, v.), with which the queue overflows at time ^o + u (see
Eq. (B.50)). Next, by using the algorithm in Figure B.2, we reduce probabilities p,'s (1 < i < n) to
three values: pmin,PmaT, andpni, respectively. Let pj denote the final probability of flow i, and let
P'(x > s, u) denote the final probability of the queue overflowing at time to + u. More precisely,
from Eqs. (B.50) and (B.47) we have

n n

pf(x>s,v,) = Y, Pf(r.u)=]T T>(pl,p2,....p,l), (B.64)
i=v+\ i=v+\

where v = £Li Pk(v) + ^ and p, = ;>„„■„, Vi. G U, p, = plliaT, Vi G V, and /;,- = pAI, VI G V.
Since after each transformation P(x > s.v.) can only increase, we have pf(x > s.v.) > P(x >
s,u).

Let riu, iiy, and n^ be the number of flows in sets U, V, and M, respectively. Define integers
vu, vy, andwy\/, such that v = vu + vy + v,\i, and vy < v,y,vy < ny, and VM < UM, respectively.
Then, it can be shown that

Pf {x > s.v) < Pf + Py + PAI, (B.65)

where

~ (B.66)

i=r.\i + \

Due to the notation complexity we omit the derivation of Eq. (B.65). Instead, below we give an
alternate method that achieves the same result.

The key observation is that Py represents the probability with which more than Y,ieu lu'T'i\ +v(f
packets from flows in U arrive during the interval [/0. to + ?/,). This is easy to see, as the probability
that exactly Y,iev lu ' rd + m packets from flows in U arrive during [t0, to + u) is (";

f
(')p™i7l(l -

Pram)"1'""1' (see Eq. (B.47) for comparison).
Similarly, Py is the probability that more than £?-er [v,-r,J +vy packets from flows in V arrive

during [to, to + u), while PM is the probability that more than X^:e/i/Lw ' rd + VM packets from
flows in M arrive during the same interval.

Consequently, (1 — Py)(l — Py)(l — PM) represents the probability with which no more than

JLieu lu'ri\ + vu, Y.ie\' lu"ri\ +vy, and Y^ieM lu'7'd + VM packets are received from flows in U,
V, and M during [to, to + u). Clearly this probability is no larger than the probability of receiving
no more than YJi=\ lu •r^+v packets from all flows during the interval [to, to + u), a probability
which is exactly 1 — Pf(x > s, u). This yields

1-Pf(x>s,u) > (l-P{;)(l-iY)(l-PA/)=> (B.67)

Pf(x>3,u) < l-(l-PU)(l-Py)(l-PM)<PU + Py+PM.

186

Next, consider the expression of Pu in Eq. (B.66). Let

su = vu — uu, (B.68)

where uv = pminnu- Then it is easy to see that the expressions of pmin (i.e., pmin = uv/njj)
and Pv, given by Eq. (B.66), are identical to the expressions of p(d) and P(x > s,u), given by
Eqs. (B.26) and (B.28), respectively, after the following substitutions: d <- uu,n <- nv,u <- uv,
s «- su- By applying the result of Lemma 8 we have the following bound

Pu = £ 7 ^m(1_Pmmr"? (B'69)

[T/l- (^; - l)/2nu \ ^ (nu + su)2

P[nu)\27r\l + (su-l)/2nu) 4sunu "

Next we compute su, such that

3 mnc/jV27rU + (^-l)/2n[/y' 4*^

By applying the same approximations used in proving Lemma 9 (see Eq. (B.41)), i.e., su < nu,
sy <C nv, and sM < «M» respectively, we get

auC,Jnu(^L-^m-l), (B.71)

and similarly

sv K ±„ (!^ _ Üfeffi - l) (B.72)

, /lnnM ln(e/3) ,

By using the above values for su, sy, and SM, respectively, and by the definition of pf(x >
s, u) and Eq. (B.65), we have

P(x >s,u)< Pf(x >s,u)<Pu + Py + PM<3-^ = e. (B.73)

Now it remains to compute s. First, recall that su = vu — uu, sy = vu — uy, SM = VM — UM,
where uv = PminU, uy = pmaxU, and uM = PMU (see Eq. (B.68)). From here we obtain

su + sy + sM = {vu ~ nu) + (vy - ny) + (VM ~ nM) (B.74)

= v — nu — ny — UM — 3

= V- Pminnu - Pmaxny - PMnM

— v - £Pmin _ £Pmax ~ X! PM

i£U ieV iEM
n

= V - ^Pi = s.
i=l

187

As both P(x > s, u) and pf(x > sy u) decrease in s, for our puipose it is sufficient to determine
an upper bound for s. From Eqs. (B.71), (B.72) and (B.74) this reduces to compute

.Inn./ ln(e/3) \\ n> -^r1 - -Af2 ~ l)]■ (B.75)

subject to nn + ny + IIM = n. Since the function y/x In x is concave, it follows that expression
(B.75) achieves maximum for nv = ny = nm = n/3. Finally, we choose

. = 3.^(^-N^)-„=,,3,,(^-^-l|,

which completes the proof. D
By combining Lemmas 9 and 12 we have the following result

Theorem 3 Consider a server traversed by n flows. Assume that the arrival times of the pack-
ets from different flows are independent, and that all packets have the same size. Then, for any
given probability e, the queue size at any time instant during a server busy period is asymptotically
bounded above by s, where

/„ /In n hif \

0»(-2--"2--lJ. (BJ7)

with a probability larger than 1 — e. For identical reseirations ß = 1; for heterogeneous resen>a-
tions ß = 3.

B.4 Proof of Theorem 4

Theorem 4 Consider a link of capacity C at time t. Assume that no reseivation terminates and
there are no reservation failures or request losses after time t. Then if there is sufficient demand
after t the link utilization approaches asymptotically C(l-/)/(l + /).

Proof. If the aggregate reservation at time t is larger than C{\ - /)/(l + /), the proof is trivially
true. Next, we consider the case in which the aggregate reservation is less than C(l-/)/(l + /).

In particular, let C{\ - /)/(l + /) - A be the aggregate reservation at time t. Without loss
of generality assume t = uk. Then we will show that if no reservation terminates, no reservation
request fails, and there is enough demand after time uk, then at least (1 + /)A/2 bandwidth is
allocated during the next two slots, i.e., during the interval (uk, uk+2\. Thus, for any arbitrary small
real e, we are guaranteed that after, at most,

ln(e/A) 2xm±m <B-78>
slots the aggregate reservation will exceed C(l-/)/(l + /)-e.

From Eq. (5.20) it follows that the maximum capacity which can be allocated during the interval
(uk,Uk+i\ is max(C - Rcai(uk), 0). Assume then that Ai capacity is allocated during (uk, uk+i],

188

edge node

core node

Tw-TrTj

Figure B.3: The scenario in which the upper bound of bj, i.e., r.;(IV — Tj — Tj), is achieved. The arrows
represent packet transmissions. TV is the averaging window size; Tj is an upper bound on the packet inter-
departure time; Tj is an upper bound on the delay jitter. Both ml and ml fall just inside the estimation
interval, Tw, at the core node.

where Ai < max(C — Rcai(iik),0). Consider two cases whether Ai > A or not. If Ai > A, the
proof follows trivially.

Assume Ai < A. Then we will show that at time uk+2 the aggregate reservation can increase by
at least a constant fraction of A. From Figure B.3 is easy to see that, for any reservation continuously
active during an interval {ukluk+\), we have

bi{uk,uk+i) < n{Tw + Ti + Tj). (B.79)

Since no reservation terminates during (uk,uk+\), we have C(uk+\) = C{uk) U N{uk+\). Let
aci £ (uk, Uk+i] De the time when flow i becomes active during (ttfc, itjt+i]. Since 6j(acj, Ufc+i) <
bi(iik,Uk+i), by using Eq. (B.79), we obtain

B{uk,uk+1)= Y, bi(uk,uk+1)< Y niTw + Tr + Tw). (B.80)
iec(uk+1) iec(uk+1)

From here we get

RDPs(uk,uk+i) < R(uk+i)(l +/)• (B.81)

Since there are no duplicate requests or partial reservation failures after time t = uk, we have
Ai = Rneyj{uk+i). From here and from Eq. (5.20) and Eq. (B.81) we have

Rcal(uk+1) < fiT(^+l) + Al< R(uk+1)m + AX. 1-/ 1-/
(B.82)

In addition, we have R(uk+i) = R{uk) + Ai. Since R(uk) = C(l — /)/(l + /) — A, from
Eq. (B.82), it follows

C-A^K+O^C-AK+oi-^-Ax^^A-^Ai.
1-/ 1-/ 1-/

(B.83)

Finally, consider two cases whether (a) Ai < A(l + /)/2, or (b) not. If (a) is true then the link
can allocate up to

189

A! + C - i?,„,(u,+1) > A, + I±/A - ^A, = 1±/(A - A,) > ^A, (B.84)

capacity during the time interval (H/,..7//,.+2]. In case (b) we have trivially A! > A(l + /)/2. Thus
in both cases we can allocate at least A(l + /)/2 new capacity during (?/,£, ?^.+2]. D

190

